-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference.py
80 lines (66 loc) · 2.52 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import numpy as np
from collections import OrderedDict
from imageio import imread, imwrite
import torch
from torch import nn
import torch.distributions as D
from mmgen.models import build_module
from unpaired_cycler2r.models import *
class DemoModel(nn.Module):
def __init__(self, ckpt_path) -> None:
super().__init__()
# load checkpoint
ckpt = torch.load(ckpt_path, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
if k.startswith('generator.'):
state_dict[k[len('generator.'):]] = v
# get invISP model
self.model = build_module(dict(type='inverseISP'))
self.model.load_state_dict(state_dict, strict=False)
self.model.eval()
def _get_illumination_condition(self, img):
mean_var = self.model.color_condition_gen(img)
m = D.Normal(mean_var[:, 0],
torch.clamp_min(torch.abs(mean_var[:, 1]), 1e-6))
color_condition = m.sample()
mean_var = self.model.bright_condition_gen(img)
m = D.Normal(mean_var[:, 0],
torch.clamp_min(torch.abs(mean_var[:, 1]), 1e-6))
bright_condition = m.sample()
condition = torch.cat(
[color_condition[:, None], bright_condition[:, None]], 1)
return condition
def _mosaic(self, x):
h, w = x.shape[2:]
_x = torch.zeros(x.shape[0], 4, h // 2, w // 2, device=x.device)
_x[:, 0] = x[:, 0, 0::2, 0::2]
_x[:, 1] = x[:, 0, 0::2, 1::2]
_x[:, 2] = x[:, 0, 1::2, 0::2]
_x[:, 3] = x[:, 0, 1::2, 1::2]
return _x
def forward(self, rgb, mosaic=False):
with torch.no_grad():
# get illumination condition
condition = self._get_illumination_condition(rgb)
# get simulated RAW image
raw = self.model(rgb, condition, rev=False)
raw = torch.clamp(raw, 0, 1)
if mosaic:
raw = self._mosaic(raw)
return raw
if __name__ == '__main__':
args = argparse.ArgumentParser()
args.add_argument('--ckpt', type=str)
args.add_argument('--rgb', type=str)
args = args.parse_args()
model = DemoModel(args.ckpt)
img = imread(args.rgb).astype(np.float32) / 255
img = torch.from_numpy(img).permute(2, 0, 1)[None]
model = model.cuda()
img = img.cuda()
x = model(img, mosaic=False)
x = x[0].permute(1, 2, 0).cpu().numpy()
x = (x * 255).astype(np.uint8)
imwrite('simulated_preview.png', x)