-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmnistm.py
198 lines (165 loc) · 6.87 KB
/
mnistm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torchvision.datasets as datasets
from torch.utils.data import SubsetRandomSampler, DataLoader
from torchvision import transforms
import torch.utils.data as data
import torch
import os
import errno
from PIL import Image
import params
# MNIST-M
class MNISTM(data.Dataset):
"""`MNIST-M Dataset."""
url = "https://github.com/VanushVaswani/keras_mnistm/releases/download/1.0/keras_mnistm.pkl.gz"
raw_folder = 'raw'
processed_folder = 'processed'
training_file = 'mnist_m_train.pt'
test_file = 'mnist_m_test.pt'
def __init__(self,
root, mnist_root="data",
train=True,
transform=None, target_transform=None,
download=False):
"""Init MNIST-M dataset."""
super(MNISTM, self).__init__()
self.root = os.path.expanduser(root)
self.mnist_root = os.path.expanduser(mnist_root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
if self.train:
self.train_data, self.train_labels = \
torch.load(os.path.join(self.root,
self.processed_folder,
self.training_file))
else:
self.test_data, self.test_labels = \
torch.load(os.path.join(self.root,
self.processed_folder,
self.test_file))
def __getitem__(self, index):
"""Get images and target for data loader.
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
# print(type(img))
img = Image.fromarray(img.squeeze().numpy(), mode='RGB')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
"""Return size of dataset."""
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def _check_exists(self):
return os.path.exists(os.path.join(self.root,
self.processed_folder,
self.training_file)) and \
os.path.exists(os.path.join(self.root,
self.processed_folder,
self.test_file))
def download(self):
"""Download the MNIST data."""
# import essential packages
from six.moves import urllib
import gzip
import pickle
from torchvision import datasets
# check if dataset already exists
if self._check_exists():
return
# make data dirs
try:
os.makedirs(os.path.join(self.root, self.raw_folder))
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# download pkl files
print('Downloading ' + self.url)
filename = self.url.rpartition('/')[2]
file_path = os.path.join(self.root, self.raw_folder, filename)
if not os.path.exists(file_path.replace('.gz', '')):
data = urllib.request.urlopen(self.url)
with open(file_path, 'wb') as f:
f.write(data.read())
with open(file_path.replace('.gz', ''), 'wb') as out_f, \
gzip.GzipFile(file_path) as zip_f:
out_f.write(zip_f.read())
os.unlink(file_path)
# process and save as torch files
print('Processing...')
# load MNIST-M images from pkl file
with open(file_path.replace('.gz', ''), "rb") as f:
mnist_m_data = pickle.load(f, encoding='bytes')
mnist_m_train_data = torch.ByteTensor(mnist_m_data[b'train'])
mnist_m_test_data = torch.ByteTensor(mnist_m_data[b'test'])
# get MNIST labels
mnist_train_labels = datasets.MNIST(root=self.mnist_root,
train=True,
download=True).train_labels
mnist_test_labels = datasets.MNIST(root=self.mnist_root,
train=False,
download=True).test_labels
# save MNIST-M dataset
training_set = (mnist_m_train_data, mnist_train_labels)
test_set = (mnist_m_test_data, mnist_test_labels)
with open(os.path.join(self.root,
self.processed_folder,
self.training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(self.root,
self.processed_folder,
self.test_file), 'wb') as f:
torch.save(test_set, f)
print('MNISTM Done!')
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.29730626, 0.29918741, 0.27534935),
(0.32780124, 0.32292358, 0.32056796))
])
mnistm_train_dataset = MNISTM(root='../data/MNIST-M', train=True, download=True,
transform=transform)
mnistm_valid_dataset = MNISTM(root='../data/MNIST-M', train=True, download=True,
transform=transform)
mnistm_test_dataset = MNISTM(root='../data/MNIST-M', train=False, transform=transform)
indices = list(range(len(mnistm_train_dataset)))
validation_size = 5000
train_idx, valid_idx = indices[validation_size:], indices[:validation_size]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
mnistm_train_loader = DataLoader(
mnistm_train_dataset,
batch_size=params.batch_size,
sampler=train_sampler,
num_workers=params.num_workers
)
mnistm_valid_loader = DataLoader(
mnistm_valid_dataset,
batch_size=params.batch_size,
sampler=train_sampler,
num_workers=params.num_workers
)
mnistm_test_loader = DataLoader(
mnistm_test_dataset,
batch_size=params.batch_size,
num_workers=params.num_workers
)