-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpredict.py
33 lines (27 loc) · 1.09 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
"""
This file used to load our model and predict batch of images from a directory.
"""
import os
import numpy as np
from tqdm import tqdm
import tensorflow.keras as K
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import img_to_array
model = K.models.load_model("model_dir..")
types = ['acne', 'carcinoma', 'eczema', 'keratosis', 'millia', 'rosacea']
img_path = os.listdir('images_to_predict_dir..')
for i in tqdm(img_path):
fname = 'pic to check'+'/'+i
img = image.load_img(fname, target_size=(299, 299))
x = img_to_array(img)
x = K.applications.xception.preprocess_input(x)
prediction = model.predict(np.array([x]))[0]
test_pred = np.argmax(prediction)
result = [(types[i], float(prediction[i]) * 100.0) for i in range(len(prediction))]
result.sort(reverse=True, key=lambda x: x[1])
print(f'Image name: {i}')
for j in range(6):
(class_name, prob) = result[j]
print("Top %d ====================" % (j + 1))
print(class_name + ": %.2f%%" % (prob))
print("\n")