forked from martinfelis/puppeteer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_fitting_errors.py
executable file
·89 lines (70 loc) · 2.51 KB
/
plot_fitting_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/python
import matplotlib.pyplot as plt
from matplotlib import cm
import pylab
import numpy
import sys
def usage (arg0):
print ("Usage: {} [filename.log] [--pdf] [--png]".format(arg0))
print ("Plots fitting errors for the given filename.")
print ("--pdf Save pdf of the plot as [filename].pdf")
print ("--png Save png of the plot as [filename].png")
sys.exit(1)
filename = "fitting_log.csv"
save_pdf = False
save_png = False
if len(sys.argv) > 1:
filename = sys.argv[1]
if len(sys.argv) > 2:
index = 2
while index < len(sys.argv):
arg = sys.argv[index]
if arg == "--pdf":
save_pdf = True
elif arg == "--png":
save_png = True
else:
usage (sys.argv[0])
index = index + 1
data_array = numpy.genfromtxt(filename, delimiter=',', names=True)
figure = plt.figure(figsize=(13,4))
ax1 = plt.subplot(1, 3, 1)
marker_names = data_array.dtype.names[2:]
marker_count = len(marker_names)
marker_colors = [None] * marker_count
average_errors = numpy.zeros(marker_count)
for col_name in sorted(marker_names):
marker_index = marker_names.index(col_name)
average_errors[marker_index] = numpy.average(data_array[col_name])
marker_colors[marker_index] = cm.jet (1. * marker_index / marker_count)
bar_pos = numpy.arange(marker_count) + 0.5
rects = ax1.bar(bar_pos, average_errors, align='center', color=marker_colors)
ax1.axhline(numpy.average(average_errors), label="average", color="red")
pylab.xticks(bar_pos, marker_names, rotation=90)
ax1.legend()
ax1.set_title ('Average Marker Errors')
ax1.set_ylabel ('(m)')
pylab.xlim([0, marker_count])
pylab.ylim([0, 0.06])
ax2 = plt.subplot(1, 3, 2)
for col_name in sorted(marker_names):
marker_index = marker_names.index(col_name)
plt.plot(data_array[col_name], color=marker_colors[marker_index])
pylab.xlim([0, len(data_array[col_name])])
ax2.set_title ('Marker Error per Capture Frame')
ax2.set_ylabel ('(m)')
pylab.ylim([0, 0.06])
pylab.xlim ([0, len(data_array['frame'])])
ax3 = plt.subplot(1, 3, 3)
ax3.set_title ('IK Steps')
plt.plot(data_array['frame'], data_array['steps'], 'x')
ax3.axhline(numpy.average(data_array['steps']), label="average", color="red")
pylab.xlim ([0, len(data_array['frame'])])
pylab.ylim ([0, 200])
figure.canvas.set_window_title (filename)
plt.subplots_adjust(left=0.08, right = 0.98, bottom=0.2)
if save_pdf:
plt.savefig (filename[:-3] + "pdf", format='pdf')
if save_png:
plt.savefig (filename[:-3] + "png", format='png')
plt.show()