This is the Official Evaluation Kit for OpenLane CIPO Detection.
- Prepare your result json in directory following this structure:
|-- results
| |-- segment-xxx
| | |-- xxx.json
| | |-- ...
| |-- segment-xxx
| | |-- xxx.json
| | |-- ...
| |-- ...
- Prepare your annotation json in directory following this structure:
|-- annotations
| |-- segment-xxx
| | |-- xxx.json
| | |-- ...
| |-- segment-xxx
| | |-- xxx.json
| | |-- ...
| |-- ...
- Each json should be formatted in the following structure:
{
"results": [ (k objects in `results` list)
{
"width": <float> -- width of cipo bbox
"height": <float> -- height of cipo bbox
"x": <float> -- x axis of cipo bbox left-top corner
"y": <float> -- y axis of cipo bbox left-top corner
"id": <str> -- importance level of cipo bbox
"type": <int> -- type of cipo bbox
"score": <float> -- confidence, it only exists in result json
},
...
],
"raw_file_path": <str> -- image path
}
- Prepare your annotation and result file name in two txt file, both of which in the following formats:
segment-xxx/xxx.json
segment-xxx/xxx.json
...
To run the evaluation for your method, please run:
python eval.py --anno_txt ./anno_file.txt --res_txt ./res_file.txt
We provide demo code in example/
. Please follow example/EvalDemo.py
. We put some dummy ground truth in example/annotations/
and prediction in example/results/
. And we prepare two example txt files txtfile.txt
and resfile.txt
. please run python EvalDemo.py --anno_txt ./txtfile.txt --res_txt ./resfile.txt
to see the demo evaluation.
We adopt the evaluation metric in COCO.
Our CIPO evaluation code builds on COCO.