forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrtformer_slim_ade20k_512x512_160k.yml
71 lines (63 loc) · 1.47 KB
/
rtformer_slim_ade20k_512x512_160k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
_base_: '../_base_/ade20k.yml'
batch_size: 4 # total batch size: 4 * 4
iters: 160000
train_dataset:
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
export:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
_inherited_: False
type: AdamW
beta1: 0.9
beta2: 0.999
weight_decay: 0.05
lr_scheduler:
_inherited_: False
type: PolynomialDecay
learning_rate: 1.0e-4
power: 1.
end_lr: 1.0e-7
warmup_iters: 1500
warmup_start_lr: 1.0e-6
loss:
types:
- type: CrossEntropyLoss
coef: [1, 0.4]
model:
type: RTFormer
base_channels: 32
head_channels: 64
drop_path_rate: 0.1
cross_size: 8
use_injection: [True, False]
pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/rtformer_slim_backbone_imagenet_pretrained.zip