forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathval.py
237 lines (216 loc) · 10.7 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import time
import paddle
import paddle.nn.functional as F
from paddleseg.utils import metrics, TimeAverager, calculate_eta, logger, progbar
from paddleseg.core import infer
np.set_printoptions(suppress=True)
def evaluate(model,
eval_dataset,
aug_eval=False,
scales=1.0,
flip_horizontal=False,
flip_vertical=False,
is_slide=False,
stride=None,
crop_size=None,
precision='fp32',
amp_level='O1',
num_workers=0,
print_detail=True,
auc_roc=False):
"""
Launch evalution.
Args:
model(nn.Layer): A semantic segmentation model.
eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
aug_eval (bool, optional): Whether to use mulit-scales and flip augment for evaluation. Default: False.
scales (list|float, optional): Scales for augment. It is valid when `aug_eval` is True. Default: 1.0.
flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when `aug_eval` is True. Default: True.
flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when `aug_eval` is True. Default: False.
is_slide (bool, optional): Whether to evaluate by sliding window. Default: False.
stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height.
It should be provided when `is_slide` is True.
crop_size (tuple|list, optional): The crop size of sliding window, the first is width and the second is height.
It should be provided when `is_slide` is True.
precision (str, optional): Use AMP if precision='fp16'. If precision='fp32', the evaluation is normal.
amp_level (str, optional): Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, the input data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel and batchnorm. Default is O1(amp)
num_workers (int, optional): Num workers for data loader. Default: 0.
print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True.
auc_roc(bool, optional): whether add auc_roc metric
Returns:
float: The mIoU of validation datasets.
float: The accuracy of validation datasets.
"""
model.eval()
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
batch_sampler = paddle.io.DistributedBatchSampler(
eval_dataset, batch_size=1, shuffle=False, drop_last=False)
loader = paddle.io.DataLoader(
eval_dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
return_list=True, )
total_iters = len(loader)
intersect_area_all = paddle.zeros([1], dtype='int64')
pred_area_all = paddle.zeros([1], dtype='int64')
label_area_all = paddle.zeros([1], dtype='int64')
logits_all = None
label_all = None
if print_detail:
logger.info("Start evaluating (total_samples: {}, total_iters: {})...".
format(len(eval_dataset), total_iters))
#TODO(chenguowei): fix log print error with multi-gpus
progbar_val = progbar.Progbar(
target=total_iters, verbose=1 if nranks < 2 else 2)
reader_cost_averager = TimeAverager()
batch_cost_averager = TimeAverager()
batch_start = time.time()
with paddle.no_grad():
for iter, data in enumerate(loader):
reader_cost_averager.record(time.time() - batch_start)
label = data['label'].astype('int64')
if aug_eval:
if precision == 'fp16':
with paddle.amp.auto_cast(
level=amp_level,
enable=True,
custom_white_list={
"elementwise_add", "batch_norm",
"sync_batch_norm"
},
custom_black_list={'bilinear_interp_v2'}):
pred, logits = infer.aug_inference(
model,
data['img'],
trans_info=data['trans_info'],
scales=scales,
flip_horizontal=flip_horizontal,
flip_vertical=flip_vertical,
is_slide=is_slide,
stride=stride,
crop_size=crop_size)
else:
pred, logits = infer.aug_inference(
model,
data['img'],
trans_info=data['trans_info'],
scales=scales,
flip_horizontal=flip_horizontal,
flip_vertical=flip_vertical,
is_slide=is_slide,
stride=stride,
crop_size=crop_size)
else:
if precision == 'fp16':
with paddle.amp.auto_cast(
level=amp_level,
enable=True,
custom_white_list={
"elementwise_add", "batch_norm",
"sync_batch_norm"
},
custom_black_list={'bilinear_interp_v2'}):
pred, logits = infer.inference(
model,
data['img'],
trans_info=data['trans_info'],
is_slide=is_slide,
stride=stride,
crop_size=crop_size)
else:
pred, logits = infer.inference(
model,
data['img'],
trans_info=data['trans_info'],
is_slide=is_slide,
stride=stride,
crop_size=crop_size)
intersect_area, pred_area, label_area = metrics.calculate_area(
pred,
label,
eval_dataset.num_classes,
ignore_index=eval_dataset.ignore_index)
# Gather from all ranks
if nranks > 1:
intersect_area_list = []
pred_area_list = []
label_area_list = []
paddle.distributed.all_gather(intersect_area_list,
intersect_area)
paddle.distributed.all_gather(pred_area_list, pred_area)
paddle.distributed.all_gather(label_area_list, label_area)
# Some image has been evaluated and should be eliminated in last iter
if (iter + 1) * nranks > len(eval_dataset):
valid = len(eval_dataset) - iter * nranks
intersect_area_list = intersect_area_list[:valid]
pred_area_list = pred_area_list[:valid]
label_area_list = label_area_list[:valid]
for i in range(len(intersect_area_list)):
intersect_area_all = intersect_area_all + intersect_area_list[
i]
pred_area_all = pred_area_all + pred_area_list[i]
label_area_all = label_area_all + label_area_list[i]
else:
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
if auc_roc:
logits = F.softmax(logits, axis=1)
if logits_all is None:
logits_all = logits.numpy()
label_all = label.numpy()
else:
logits_all = np.concatenate(
[logits_all, logits.numpy()]) # (KN, C, H, W)
label_all = np.concatenate([label_all, label.numpy()])
batch_cost_averager.record(
time.time() - batch_start, num_samples=len(label))
batch_cost = batch_cost_averager.get_average()
reader_cost = reader_cost_averager.get_average()
if local_rank == 0 and print_detail:
progbar_val.update(iter + 1, [('batch_cost', batch_cost),
('reader cost', reader_cost)])
reader_cost_averager.reset()
batch_cost_averager.reset()
batch_start = time.time()
metrics_input = (intersect_area_all, pred_area_all, label_area_all)
class_iou, miou = metrics.mean_iou(*metrics_input)
acc, class_precision, class_recall = metrics.class_measurement(
*metrics_input)
kappa = metrics.kappa(*metrics_input)
class_dice, mdice = metrics.dice(*metrics_input)
if auc_roc:
auc_roc = metrics.auc_roc(
logits_all, label_all, num_classes=eval_dataset.num_classes)
auc_infor = ' Auc_roc: {:.4f}'.format(auc_roc)
if print_detail:
infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
len(eval_dataset), miou, acc, kappa, mdice)
infor = infor + auc_infor if auc_roc else infor
logger.info(infor)
logger.info("[EVAL] Class IoU: \n" + str(np.round(class_iou, 4)))
logger.info("[EVAL] Class Precision: \n" + str(
np.round(class_precision, 4)))
logger.info("[EVAL] Class Recall: \n" + str(np.round(class_recall, 4)))
return miou, acc, class_iou, class_precision, kappa