-
Notifications
You must be signed in to change notification settings - Fork 468
/
Copy pathinfer_paddle_model.cc
executable file
·79 lines (68 loc) · 2.45 KB
/
infer_paddle_model.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& model_dir, const std::string& image_file,
const fastdeploy::RuntimeOption& option) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto model = fastdeploy::vision::detection::YOLOv7(
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
assert(model.Initialized());
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/paddle_model "
"path/to/image "
"run_option, "
"e.g ./infer_demo ./yolov7s_infer ./000000014439.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run on cpu with ORT "
"backend; 1: run "
"on gpu with TensorRT backend ; 2: run with kunlunxin. "
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[3]);
if (flag == 0) {
option.UseCpu();
option.UseOrtBackend();
} else if (flag == 1) {
option.UseGpu();
option.UseTrtBackend();
} else if (flag == 2) {
option.UseKunlunXin();
} else if (flag == 3) {
option.UseAscend();
}
std::string model_dir = argv[1];
std::string test_image = argv[2];
InitAndInfer(model_dir, test_image, option);
return 0;
}