-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathpredict_ensemble_three.py
207 lines (185 loc) · 6.18 KB
/
predict_ensemble_three.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
from core.predict_ensemble_three import predictEnsembleThree
import datasets, models
def parse_args():
parser = argparse.ArgumentParser(description='Model prediction')
# params of prediction
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
"--config_1",
dest="cfg_1",
help="The config file.",
default=None,
type=str)
parser.add_argument(
'--model_path_1',
dest='model_path_1',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
"--config_crop",
dest="cfg_crop",
help="The config file.",
default=None,
type=str)
parser.add_argument(
'--model_path_crop',
dest='model_path_crop',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
'--image_path',
dest='image_path',
help='The path of image, it can be a file or a directory including images',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the predicted results',
type=str,
default='./output/result')
# augment for prediction
parser.add_argument(
'--aug_pred',
dest='aug_pred',
help='Whether to use mulit-scales and flip augment for prediction',
action='store_true')
parser.add_argument(
'--scales',
dest='scales',
nargs='+',
help='Scales for augment',
type=float,
default=1.0)
parser.add_argument(
'--flip_horizontal',
dest='flip_horizontal',
help='Whether to use flip horizontally augment',
action='store_true')
parser.add_argument(
'--flip_vertical',
dest='flip_vertical',
help='Whether to use flip vertically augment',
action='store_true')
# sliding window prediction
parser.add_argument(
'--is_slide',
dest='is_slide',
help='Whether to prediction by sliding window',
action='store_true')
parser.add_argument(
'--crop_size',
dest='crop_size',
nargs=2,
help='The crop size of sliding window, the first is width and the second is height.',
type=int,
default=None)
parser.add_argument(
'--stride',
dest='stride',
nargs=2,
help='The stride of sliding window, the first is width and the second is height.',
type=int,
default=None)
return parser.parse_args()
def get_image_list(image_path):
"""Get image list"""
valid_suffix = [
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
]
image_list = []
image_dir = None
if os.path.isfile(image_path):
if os.path.splitext(image_path)[-1] in valid_suffix:
image_list.append(image_path)
elif os.path.isdir(image_path):
image_dir = image_path
for root, dirs, files in os.walk(image_path):
for f in files:
if '.ipynb_checkpoints' in root:
continue
if os.path.splitext(f)[-1] in valid_suffix:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'`--image_path` is not found. it should be an image file or a directory including images'
)
if len(image_list) == 0:
raise RuntimeError('There are not image file in `--image_path`')
return image_list, image_dir
def main(args):
env_info = get_sys_env()
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(args.cfg)
val_dataset = cfg.val_dataset
cfg_1 = Config(args.cfg_1)
cfg_crop = Config(args.cfg_crop)
val_dataset_crop = cfg_crop.val_dataset
if not val_dataset:
raise RuntimeError(
'The verification dataset is not specified in the configuration file.'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
model = cfg.model
model_1 = cfg_1.model
model_crop = cfg_crop.model
transforms = val_dataset.transforms
transforms_crop = val_dataset_crop.transforms
image_list, image_dir = get_image_list(args.image_path)
logger.info('Number of predict images = {}'.format(len(image_list)))
predictEnsembleThree(
model,
model_1,
model_crop,
model_path=args.model_path,
model_path_1=args.model_path_1,
model_path_crop=args.model_path_crop,
transforms=transforms,
transforms_crop=transforms_crop,
image_list=image_list,
image_dir=image_dir,
save_dir=args.save_dir,
aug_pred=args.aug_pred,
scales=args.scales,
flip_horizontal=args.flip_horizontal,
flip_vertical=args.flip_vertical,
is_slide=args.is_slide,
crop_size=args.crop_size,
stride=args.stride, )
if __name__ == '__main__':
args = parse_args()
main(args)