Skip to content

Latest commit

 

History

History
49 lines (44 loc) · 2.16 KB

README.md

File metadata and controls

49 lines (44 loc) · 2.16 KB

CSKD-TF

This is an unofficial implementation of CS-KD (Regularizing Class-wise Predictions via Self-knowledge Distillation).

Requirements

  • python >= 3.6
  • tensorflow >= 2.2

Training

python main.py \
    --backbone resnet18 \
    --dataset cifar100 \
    --loss cls \
    --temperature 4 \
    --loss_weight 1 \
    --checkpoint \
    --history \
    --lr_scheduler \
    --src_path /path/for/source \
    --data_path /path/for/data \
    --result_path /path/for/result \
    --gpus 0

Evaluation

Results

Our model achieves the following performance on :

ResNet-18

Dataset Top-1 error rates (paper, Cross-entropy) Top-1 error rates (paper, CSKD) Top-1 error rates (ours, Cross-entropy) Top-1 error rates (ours, CSKD)
CIFAR-100 24.71 (± 0.24) 21.99 (± 0.13) 27.73 29.76
TinyImageNet 43.53 (± 0.19) 41.62 (± 0.38) 44.18 43.34
CUB-200-2011 46.00 (± 1.43) 33.28 (± 0.99) - -
Stanford Dogs 36.29 (± 0.32) 30.85 (± 0.28) - -
MIT67 44.75 (± 0.80) 40.45 (± 0.45) - -

Citation

@InProceedings{Yun_2020_CVPR,
author = {Yun, Sukmin and Park, Jongjin and Lee, Kimin and Shin, Jinwoo},
title = {Regularizing Class-Wise Predictions via Self-Knowledge Distillation},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}