-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathuntModels.pas
1079 lines (862 loc) · 31.9 KB
/
untModels.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
unit untModels;
interface
uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,
Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Vcl.Buttons,rtti, System.Math, System.Generics.Collections,
spring,
TF4D.Core.CApi,
Numpy,
Tensorflow,
Tensorflow.Core,
TensorFlow.DApiBase,
TensorFlow.DApi,
Tensorflow.Utils,
Keras.Core,
keras.LayersApi,
keras.Data,
Keras.KerasApi,
keras.Models,
Keras.Layer,
keras.Optimizer,
TensorFlow.Variable,
TensorFlow.Tensor,
NumPy.NDArray,
Numpy.Axis;
type
ExampleConfig = class
/// <summary>
/// Example name
/// </summary>
Name : string;
/// <summary>
/// True to run example
/// </summary>
Enabled : boolean ;
/// <summary>
/// Set true to import the computation graph instead of building it.
/// </summary>
IsImportingGraph : boolean ;
end;
/// <summary>
/// Interface of Example project
/// Each example should implement IExample so the entry program will find it.
/// </summary>
IExample = interface
['{26A60407-D1B3-4FAA-B1B4-616376E5441A}']
function GetConf: ExampleConfig;
procedure SetConf(const value: ExampleConfig);
function InitConfig: ExampleConfig;
function Run: Boolean;
procedure BuildModel;
/// <summary>
/// Build dataflow graph, train and predict
/// </summary>
/// <returns></returns>
procedure Train;
function FreezeModel : string;
procedure Test;
procedure Predict;
function ImportGraph: TFGraph;
function BuildGraph: TFGraph;
/// <summary>
/// Prepare dataset
/// </summary>
procedure PrepareData;
property Config : ExampleConfig read GetConf write SetConf;
end;
ConvNetArgs = class(ModelArgs)
NumClasses : Integer;
constructor Create;
end;
ConvNet = class(Model)
private
conv1 : ILayer;
maxpool1 : ILayer;
conv2 : ILayer;
maxpool2 : ILayer ;
flatten : ILayer ;
fc1 : ILayer;
dropout : ILayer ;
output : ILayer;
protected
function Call(inputs: TFTensors; state: TFTensor = nil; training : pBoolean= nil): TFTensors; override;
public
constructor Create(args: ConvNetArgs );
end;
/// <summary>
/// Build a convolutional neural network with TensorFlow v2.
/// This example is using a low-level approach to better understand all mechanics behind building convolutional neural networks and the training process.
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/convolutional_network.ipynb
/// </summary>
DigitRecognitionCnnKeras = class(TInterfacedObject, IExample)
private
FConfig : ExampleConfig;
// MNIST dataset parameters.
num_classes : Integer;
// Training parameters.
learning_rate : Single;
training_steps : Integer;
batch_size : Integer;
display_step : Integer;
accuracy_test : Single;
train_data : IDatasetV2;
x_test, y_test,
x_train, y_train: TNDArray;
logMsg : TStringList;
function GetConf: ExampleConfig;
procedure SetConf(const value: ExampleConfig);
protected
procedure BuildModel;
procedure Train;
function FreezeModel : string;
procedure Test;
procedure Predict;
function ImportGraph: TFGraph;
function BuildGraph: TFGraph;
procedure PrepareData;
public
constructor Create;
function InitConfig: ExampleConfig;
function Run: Boolean;
destructor Destroy; override;
procedure run_optimization(conv_net: ConvNet; optimizer: IOptimizer; x: TFTensor; y: TFTensor);
function cross_entropy_loss(x: TFTensor; y: TFTensor) : TFTensor;
function accuracy(y_pred: TFTensor; y_true: TFTensor): TFTensor;
property Log : TStringList read logMsg;
property Config : ExampleConfig read FConfig;
end;
MnistFnnKerasFunctional = class(TInterfacedObject, IExample)
private
FConfig : ExampleConfig;
// MNIST dataset parameters.
mModel : IModel;
layers : LayersApi;
x_test, y_test,
x_train, y_train: TNDArray;
logMsg : TStringList;
function GetConf: ExampleConfig;
procedure SetConf(const value: ExampleConfig);
protected
procedure BuildModel;
procedure Train;
function FreezeModel : string;
procedure Test;
procedure Predict;
function ImportGraph: TFGraph;
function BuildGraph: TFGraph;
procedure PrepareData;
public
constructor Create;
function InitConfig: ExampleConfig;
function Run: Boolean;
destructor Destroy; override;
property Log : TStringList read logMsg;
property Config : ExampleConfig read FConfig;
end;
/// <summary>
/// https://www.tensorflow.org/tutorials/generative/dcgan
/// AtCode:JG5FLDRWHY9FEZ9S V559.83530 Provided by big crabs
/// </summary>
TMnistGAN = class(TInterfacedObject, IExample)
private
fTrainCount : Integer;
FConfig : ExampleConfig;
// MNIST dataset parameters.
LeakyReLU_alpha : Single;
imgpath : string;
modelpath : string;
img_shape : TFShape;
noise_dim : Integer;
img_rows : Integer;
img_cols : Integer;
channels : Integer;
EPOCHS : Integer;
BATCH_SIZE : Integer;
BUFFER_SIZE: Integer;
data : DatasetPass;
train_images : TNDArray;
layers : LayersApi;
train_dataset: IDatasetV2;
discriminator : Model;
generator : Model;
discriminator_optimizer : IOptimizer;
generator_optimizer : IOptimizer;
logMsg : TStringList;
function Make_Generator_model: Model;
function Make_Discriminator_model: Model;
function GetConf: ExampleConfig;
procedure SetConf(const value: ExampleConfig);
procedure PredictImage(g: Model; step: Integer);
function cross_entropy(x, y: TTensor): TFTensor;
procedure SaveImage(gen_imgs: TNDArray; step: Integer);
procedure Train_step(images: TFTensor);
function discriminator_loss(real_output, fake_output: TFTensor): TFTensor;
function generator_loss(fake_output: TFTensor): TFTensor;
protected
procedure BuildModel;
procedure Train;
function FreezeModel : string;
procedure Test;
procedure Predict;
function ImportGraph: TFGraph;
function BuildGraph: TFGraph;
procedure PrepareData;
public
constructor Create;
function InitConfig: ExampleConfig;
function Run: Boolean;
destructor Destroy; override;
property Log : TStringList read logMsg;
property Config : ExampleConfig read FConfig;
end;
TKerasUnitsTest = class
class procedure LeNetModel;
end;
implementation
uses System.IOUtils,
untMain,Esempi;
class procedure TKerasUnitsTest.LeNetModel ;
begin
var inputs := tf.keras.Input(TFShape.Create([28, 28, 1]));
var conv1 := tf.keras.layers.Conv2D(16, TFShape.Create([3, 3]), 'relu', 'same').Apply(inputs);
var pool1 := tf.keras.layers.MaxPooling2D(TFShape.Create([2, 2]), 2).Apply(conv1);
var conv2 := tf.keras.layers.Conv2D(32, TFShape.Create([3, 3]), 'relu', 'same').Apply(pool1);
var pool2 := tf.keras.layers.MaxPooling2D(TFShape.Create([2, 2]), 2).Apply(conv2);
var flat1 := tf.keras.layers.Flatten.Apply(pool2);
var inputs_2 := tf.keras.Input(TFShape.Create([28, 28, 1]));
var conv1_2 := tf.keras.layers.Conv2D(16, TFShape.Create([3, 3]), 'relu', 'same').Apply(inputs_2);
var pool1_2 := tf.keras.layers.MaxPooling2D(TFShape.Create([4, 4]), 4).Apply(conv1_2);
var conv2_2 := tf.keras.layers.Conv2D(32, TFShape.Create([1, 1]), 'relu', 'same').Apply(pool1_2);
var pool2_2 := tf.keras.layers.MaxPooling2D(TFShape.Create([2, 2]), 2).Apply(conv2_2);
var flat1_2 := tf.keras.layers.Flatten.Apply(pool2_2);
var concat := tf.keras.layers.Concatenate.Apply( TFTensors.Create(Tuple.Create(flat1.First, flat1_2.First)) );
var dense1 := tf.keras.layers.Dense(512, 'relu').Apply(concat);
var dense2 := tf.keras.layers.Dense(128, 'relu').Apply(dense1);
var dense3 := tf.keras.layers.Dense(10, 'relu').Apply(dense2);
var output := tf.keras.layers.Softmax(-1).Apply(dense3);
var model := tf.keras.Model( TFTensors.Create(Tuple.Create(inputs.First, inputs_2.First)), output);
model.OnEpochBegin := On_Epoch_Begin;
model.OnTrainBatchBegin := On_Train_Batch_Begin;
model.OnEndSummary := On_End_Summary;
model.summary;
var data_loader := MnistModelLoader.Create;
var ms := ModelLoadSetting.Create;
ms.TrainDir := 'mnist';
ms.OneHot := false;
ms.ValidationSize := 59900;
var dataset := data_loader.LoadAsync(ms) ;
var loss := tf.keras.losses.SparseCategoricalCrossentropy;
var optimizer := TAdam.Create(0.001);
model.compile(optimizer, loss, ['accuracy']);
var x1 : TNDArray := np.reshape(dataset.Train.Data, TFShape.Create([dataset.Train.Data.shape[0], 28, 28, 1]));
var x2 : TNDArray := x1;
var x : TArray<TNDArray> := [ x1, x2 ];
model.fit(x, dataset.Train.Labels, 8, 3);
x1 := np.ones(TFShape.Create([1, 28, 28, 1]), TF_DataType.TF_FLOAT);
x2 := np.zeros(TFShape.Create([1, 28, 28, 1]), TF_DataType.TF_FLOAT);
var pred := model.predict(TFTensors.Create([x1, x2]));
//Console.WriteLine(pred);
end;
{ ConvNetArgs }
constructor ConvNetArgs.Create;
begin
inherited Create
end;
{ ConvNet }
constructor ConvNet.Create(args: ConvNetArgs);
begin
inherited Create(args);
var layers := tf.keras.layers;
var kernel_size : TFShape := TFShape.Create([5]);
// Convolution Layer with 32 filters and a kernel size of 5.
conv1 := layers.Conv2D(32, @kernel_size, {strides}nil, {padding}'valid', {data_format}'', {dilation_rate}nil, {groups}1, tf.keras.activations.Relu);
var poolSize : TFShape := TFShape.Create([2]);
var strides : TFShape := TFShape.Create([2]);
// Max Pooling (down-sampling) with kernel size of 2 and strides of 2.
maxpool1 := layers.MaxPooling2D(@poolSize, @strides);
var kernel_size1 : TFShape := TFShape.Create([3]);
// Convolution Layer with 64 filters and a kernel size of 3.
conv2 := layers.Conv2D(64, @kernel_size1, {strides}nil, {padding}'valid', {data_format}'', {dilation_rate}nil, {groups}1, tf.keras.activations.Relu);
var poolSize1 : TFShape := TFShape.Create([2]);
var strides1 : TFShape := TFShape.Create([2]);
// Max Pooling (down-sampling) with kernel size of 2 and strides of 2.
maxpool2 := layers.MaxPooling2D(@poolSize1, @strides1);
// Flatten the data to a 1-D vector for the fully connected layer.
flatten := layers.Flatten;
// Fully connected layer.
fc1 := layers.Dense(1024);
// Apply Dropout (if is_training is False, dropout is not applied).
dropout := layers.Dropout(0.5);
// Output layer, class prediction.
output := layers.Dense(args.NumClasses);
StackLayers([conv1, maxpool1, conv2, maxpool2, flatten, fc1, dropout, output]);
end;
function ConvNet.Call(inputs: TFTensors; state: TFTensor; training: pBoolean): TFTensors;
begin
inputs := TFTensors.Create( tf.reshape(inputs.first, TFShape.Create([-1, 28, 28, 1])) );
inputs := conv1.Apply(inputs);
inputs := maxpool1.Apply(inputs);
inputs := conv2.Apply(inputs);
inputs := maxpool2.Apply(inputs);
inputs := flatten.Apply(inputs);
inputs := fc1.Apply(inputs);
inputs := dropout.Apply(inputs, @training);
inputs := output.Apply(inputs);
if not training^ then
inputs := TFTensors.Create(tf.nn.softmax(inputs.first));
Result := inputs;
end;
{ DigitRecognitionCnnKeras }
constructor DigitRecognitionCnnKeras.Create;
begin
// MNIST dataset parameters.
num_classes := 10;
// Training parameters.
learning_rate := 0.001;
training_steps:= 100;
batch_size := 128;
display_step := 10;
accuracy_test := 0.0;
logMsg := TStringList.Create;
InitConfig;
end;
destructor DigitRecognitionCnnKeras.Destroy;
begin
logMsg.Free;
FConfig.Free;
end;
function DigitRecognitionCnnKeras.InitConfig: ExampleConfig;
var
config : ExampleConfig;
begin
config := ExampleConfig.Create;
config.Name := 'MNIST CNN (Keras Subclass)';
config.Enabled := true;
config.IsImportingGraph := false;
Result := config;
FConfig := Result;
end;
function DigitRecognitionCnnKeras.Run: Boolean;
begin
tf.enable_eager_execution;
PrepareData;
Train;
Result := accuracy_test > 0.85;
end;
procedure DigitRecognitionCnnKeras.Train;
var
cArg : ConvNetArgs;
optimizer : IOptimizer;
begin
cArg := ConvNetArgs.Create;
cArg.NumClasses := num_classes;
// Build neural network model.
var conv_net := ConvNet.Create(cArg);
// ADAM optimizer.
optimizer := tf.keras.optimizers.Adam(learning_rate);
var step : Integer := 0;
// Run training for the given number of steps.
for var tTrain in train_data do
begin
Inc(step);
var batch_x := tTrain.Value1;
var batch_y := tTrain.Value2;
// Run the optimization to update W and b values.
run_optimization(conv_net, optimizer, batch_x.First, batch_y.First);
if step mod display_step = 0 then
begin
var pred := conv_net.Apply(batch_x);
var loss : TTensor := cross_entropy_loss(pred.first, batch_y.First);
var acc : TTensor := accuracy(pred.first, batch_y.First);
var fLoss := Single(loss);
var facc := Single(acc);
logMsg.Add( Format('step: %d, loss: %.3f, accuracy: %.3f',[step, floss,facc]) );
frmMain.mmo1.lines.Add(logMsg.Strings[ logMsg.Count-1 ])
end;
end;
// Test model on validation set.
x_test := x_test['::100'].numpy;
y_test := y_test['::100'].numpy;
var pred := conv_net.Apply(TFTensors.Create(x_test));
var aTest : TTensor := accuracy(pred.First, y_test);
accuracy_test := Single(aTest);
logMsg.Add('Test Accuracy: ' + accuracy_test.ToString);
frmMain.mmo1.lines.Add(logMsg.Strings[ logMsg.Count-1 ]) ;
conv_net.save_weights( 'weights.h5', true);
end;
procedure DigitRecognitionCnnKeras.Test;
var
cArg : ConvNetArgs;
begin
cArg := ConvNetArgs.Create;
cArg.NumClasses := num_classes;
// Build neural network model.
var conv_net := ConvNet.Create(cArg);
// Test model on validation set.
x_test := x_test['::100'].numpy;
y_test := y_test['::100'].numpy;
conv_net.load_weights('weights.h5');
var pred := conv_net.Apply(TFTensors.Create(x_test));
var aTest : TTensor := accuracy(pred.First, y_test);
accuracy_test := Single(aTest);
logMsg.Add('Test Accuracy: ' + accuracy_test.ToString);
end;
procedure DigitRecognitionCnnKeras.run_optimization(conv_net: ConvNet; optimizer: IOptimizer; x: TFTensor; y: TFTensor);
begin
var g := tf.GradientTape;
var pred := conv_net.Apply(TFTensors.Create(x), nil, true);
var loss := cross_entropy_loss(pred.first, y);
// Compute gradients.
var gradients := g.gradient(loss, conv_net.TrainableVariables.ToArray);
// Update W and b following gradients.
var g_v : TArray< Tuple<TFTensor,ResourceVariable> > := [];
for var i := 0 to Length(gradients) - 1 do
begin
g_v := g_v + [ Tuple.Create(gradients[i], conv_net.TrainableVariables[i] as ResourceVariable) ];
end;
optimizer.apply_gradients(g_v);
end;
function DigitRecognitionCnnKeras.cross_entropy_loss(x: TFTensor; y: TFTensor) : TFTensor;
begin
// Convert labels to int 64 for tf cross-entropy function.
y := tf.cast(y, tf.int64_t);
// Apply softmax to logits and compute cross-entropy.
var loss := tf.nn.sparse_softmax_cross_entropy_with_logits(y, x);
// Average loss across the batch.
Result := tf.reduce_mean(loss);
end;
function DigitRecognitionCnnKeras.accuracy(y_pred: TFTensor; y_true: TFTensor): TFTensor;
begin
// # Predicted class is the index of highest score in prediction vector (i.e. argmax).
var correct_prediction := tf.equal(tf.math.argmax(y_pred, 1), tf.cast(y_true, tf.int64_t));
var axix : TAxis := -1;
Result := tf.reduce_mean(tf.cast(correct_prediction, tf.float32_t), @axix);
end;
procedure DigitRecognitionCnnKeras.PrepareData;
begin
var dp : DatasetPass := TKerasApi.keras.datasets.mnist.load_data;
x_train := dp.Train.Value1;
y_train := dp.Train.Value2;
x_test := dp.Test.Value1;
y_test := dp.Test.Value2;
// Normalize images value from [0, 255] to [0, 1].
x_train := NDArray(x_train) / Single(255.0);
x_test := NDArray(x_test) / Single(255.0);
train_data := tf.data.Dataset.from_tensor_slices(x_train, y_train);
train_data := train_data.&repeat.shuffle(5000).batch(batch_size).prefetch(1).take(training_steps);
end;
procedure DigitRecognitionCnnKeras.SetConf(const value: ExampleConfig);
begin
FConfig := value;
end;
function DigitRecognitionCnnKeras.GetConf: ExampleConfig;
begin
Result := FConfig
end;
procedure DigitRecognitionCnnKeras.Predict;
begin
end;
function DigitRecognitionCnnKeras.BuildGraph: TFGraph;
begin
Result := nil;
end;
procedure DigitRecognitionCnnKeras.BuildModel;
begin
end;
function DigitRecognitionCnnKeras.FreezeModel: string;
begin
end;
function DigitRecognitionCnnKeras.ImportGraph: TFGraph;
begin
Result := nil;
end;
{ MnistFnnKerasFunctional }
constructor MnistFnnKerasFunctional.Create;
begin
layers := LayersApi.Create;
logMsg := TStringList.Create;
InitConfig;
end;
destructor MnistFnnKerasFunctional.Destroy;
begin
layers.Free;
Log.Free;
FConfig.Free;
inherited;
end;
function MnistFnnKerasFunctional.InitConfig: ExampleConfig;
var
config : ExampleConfig;
begin
config := ExampleConfig.Create;
config.Name := 'MNIST FNN (Keras Functional)';
config.Enabled := true;
config.IsImportingGraph := false;
Result := config;
FConfig := Result;
end;
function MnistFnnKerasFunctional.Run: Boolean;
begin
tf.enable_eager_execution();
PrepareData;
BuildModel;
Train;
Result := true;
end;
procedure MnistFnnKerasFunctional.PrepareData;
begin
var dp : DatasetPass := TKerasApi.keras.datasets.mnist.load_data;
x_train := dp.Train.Value1;
y_train := dp.Train.Value2;
x_test := dp.Test.Value1;
y_test := dp.Test.Value2;
// Normalize images value from [0, 255] to [0, 1].
x_train := NDArray(x_train.reshape(TFShape.Create([60000, 784]))) / Single(255.0);
x_test := NDArray(x_test.reshape(TFShape.Create([10000, 784]))) / Single(255.0);
end;
procedure MnistFnnKerasFunctional.BuildModel;
begin
// input layer
var inputs := tf.keras.Input(TFShape.Create([784]));
// 1st dense layer
var outputs := layers.Dense(64, tf.keras.activations.Relu).Apply(TFTensors.Create(inputs));
// 2nd dense layer
outputs := layers.Dense(64, tf.keras.activations.Relu).Apply(TFTensors.Create(outputs));
// output layer
outputs := layers.Dense(10).Apply(TFTensors.Create(outputs));
// build keras model
mModel := tf.keras.Model(TFTensors.Create(inputs), outputs, 'mnist_model');
mModel.OnEpochBegin := On_Epoch_Begin;
mModel.OnTrainBatchBegin := On_Train_Batch_Begin;
mModel.OnTestBatchEnd := On_Epoch_Begin;
mModel.OnEndSummary := On_End_Summary;
// show model summary
mModel.summary;
// compile keras model into tensorflow's static graph
mModel.compile(tf.keras.optimizers.RMSprop, tf.keras.losses.SparseCategoricalCrossentropy('','', true),['accuracy']);
end;
procedure MnistFnnKerasFunctional.Train;
begin
// train model by feeding data and labels.
mModel.fit(x_train, y_train, {batch_size:} 64, {epochs:} 2, {verbose:}1, {validation_split:} 0.2);
// evluate the model
mModel.evaluate(x_test, y_test, {batch_size:}-1, {verbose:} 2);
// save and serialize model
// mModel.save('mnist_model');
// recreate the exact same model purely from the file:
// model = keras.models.load_model("path_to_my_model");
end;
procedure MnistFnnKerasFunctional.SetConf(const value: ExampleConfig);
begin
FConfig := value;
end;
function MnistFnnKerasFunctional.GetConf: ExampleConfig;
begin
Result := FConfig;
end;
function MnistFnnKerasFunctional.BuildGraph: TFGraph;
begin
result := nil;
end;
function MnistFnnKerasFunctional.FreezeModel: string;
begin
end;
function MnistFnnKerasFunctional.ImportGraph: TFGraph;
begin
result := nil
end;
procedure MnistFnnKerasFunctional.Predict;
begin
end;
procedure MnistFnnKerasFunctional.Test;
begin
end;
{ TMnistGAN }
constructor TMnistGAN.Create;
begin
if not tf.executing_eagerly then
tf.enable_eager_execution;
LeakyReLU_alpha := 0.2;
imgpath := 'dcgan\imgs';
modelpath := 'dcgan\\models';
noise_dim := 100;
img_rows := 28;
img_cols := 28;
channels := 1;
EPOCHS := 20; // 50;
BATCH_SIZE := 256;
BUFFER_SIZE:= 60000;
layers := LayersApi.Create;
logMsg := TStringList.Create;
fTrainCount := 0;
InitConfig;
end;
destructor TMnistGAN.Destroy;
begin
layers.Free;
logMsg.Free;
if Assigned(data) then
data.Free;
if Assigned(train_images) then
train_images.Free;
inherited;
end;
function TMnistGAN.InitConfig: ExampleConfig;
var
config : ExampleConfig;
begin
config := ExampleConfig.Create;
config.Name := 'GAN MNIST';
config.Enabled := true;
config.IsImportingGraph := false;
Result := config;
FConfig := Result;
end;
function TMnistGAN.GetConf: ExampleConfig;
begin
Result := FConfig;
end;
procedure TMnistGAN.SetConf(const value: ExampleConfig);
begin
FConfig := value;
end;
function TMnistGAN.Run: Boolean;
begin
tf.enable_eager_execution;
PrepareData;
Train;
Result := true;
end;
procedure TMnistGAN.PrepareData;
begin
data := TKerasApi.keras.datasets.mnist.load_data;
train_images := data.Train.Value1.reshape(TFshape.Create([data.Train.Value1.Shape[0],28,28,1])).astype(np.np_float32);
train_images := (NDArray(train_images) - 127.5) / 127.5 ;
// # Batch and shuffle the data
train_dataset := tf.Data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE);
img_shape := [img_rows, img_cols, channels];
if (img_cols mod 4 <> 0) or (img_rows mod 4 <> 0) then
raise Exception.Create('The width and height of the image must be a multiple of 4');
TDirectory.CreateDirectory(imgpath);
TDirectory.CreateDirectory(modelpath);
end;
function TMnistGAN.Make_Generator_model: Model;
begin
var mModel := TKerasApi.keras.Sequential(nil,'GENERATOR');
mModel.OnEpochBegin := On_Epoch_Begin;
mModel.OnTrainBatchBegin := On_Train_Batch_Begin;
mModel.OnEndSummary := On_End_Summary;
mModel.OnTestBatchBegin := On_Train_Batch_Begin;
mModel.Add( layers.Input(TFShape.Create([noise_dim])).first );
mModel.Add( layers.Dense(7*7*256, {activation}nil ,{kernel_initializer}nil, {use_bias}False) );
mModel.Add( layers.BatchNormalization);
mModel.Add( layers.LeakyReLU);
mModel.Add( layers.Reshape(TFShape.Create([7, 7, 256]))) ;
Assert(mModel.OutputShape = TFShape.Create([-1, 7, 7, 256]));
mModel.Add( layers.Conv2DTranspose(128, TFShape.Create([5, 5]), TFShape.Create([1, 1]), 'same', {data_format}'', {dilation_rate}nil, {activation}'relu', False));
Assert(mModel.OutputShape = TFShape.Create([-1, 7, 7, 128]));
mModel.Add( layers.BatchNormalization);
mModel.Add( layers.LeakyReLU);
mModel.Add( layers.Conv2DTranspose(64, TFShape.Create([5, 5]), TFShape.Create([2, 2]), 'same', {data_format}'', {dilation_rate}nil, {activation}'relu', False));
Assert(mModel.OutputShape = TFShape.Create([-1, 14, 14, 64]));
mModel.Add( layers.BatchNormalization);
mModel.Add( layers.LeakyReLU);
mModel.Add( layers.Conv2DTranspose(1, TFShape.Create([5, 5]), TFShape.Create([2, 2]), 'same', {data_format}'', {dilation_rate}nil, {activation}'tanh', False));
Assert(mModel.OutputShape = TFShape.Create([-1, 28, 28, 1]));
mModel.summary;
Result := mModel;
end;
function TMnistGAN.Make_Discriminator_model: Model;
begin
var model := TKerasApi.keras.Sequential(nil,'DISCRIMINATOR');
model.OnEpochBegin := On_Epoch_Begin;
model.OnTrainBatchBegin := On_Train_Batch_Begin;
model.OnEndSummary := On_End_Summary;
model.OnTestBatchBegin := On_Train_Batch_Begin;
model.Add( layers.Input(img_shape).first );
model.add(layers.Conv2D(64, TFShape.Create([5, 5]), TFShape.Create([2, 2]), 'same'));
model.add(layers.LeakyReLU);
model.add(layers.Dropout(0.3));
model.add(layers.Conv2D(128, TFShape.Create([5, 5]), TFShape.Create([2, 2]), 'same'));
model.add(layers.LeakyReLU);
model.add(layers.Dropout(0.3)) ;
model.add(layers.Flatten) ;
model.add(layers.Dense(1));
model.summary;
Result := model;
end;
procedure TMnistGAN.Train_step(images: TFTensor);
var
gen_tape, disc_tape : TGradientTape;
real_output,
fake_output,
generated_images : TFTensors;
gen_loss,
disc_loss : TFTensor;
gradients_of_generator : TArray<TFTensor>;
gradients_of_discriminator : TArray<TFTensor>;
t,t1 : TArray<Single>;
s,s1 : TFShape;
begin
try
try
if fTrainCount = 40 then
fTrainCount := fTrainCount;
var sSize : TFShape := [ BATCH_SIZE, noise_dim ];
var noise := np.random.normal(@sSize);
noise := noise.astype(np.np_float32);
gen_tape := tf.GradientTape;
disc_tape := tf.GradientTape;
generated_images := generator.Apply(TFTensors.Create(noise),nil, True);
s := generated_images.First.Shape;
if generated_images.First.Dtype = TF_float then
t := generated_images.First.ToArray<Single>;
real_output := discriminator.Apply(TFTensors.Create(images),nil, true);
fake_output := discriminator.Apply(TFTensors.Create(generated_images), nil, true);
s1 := fake_output.First.Shape;
if fake_output.First.Dtype = TF_float then
t1 := fake_output.First.ToArray<Single>;
gen_loss := generator_loss(fake_output.First);
disc_loss := discriminator_loss(real_output.First, fake_output.First);
gradients_of_generator := gen_tape.gradient(gen_loss, generator.TrainableVariables.ToArray);
gradients_of_discriminator := disc_tape.gradient(disc_loss, discriminator.TrainableVariables.ToArray);
generator_optimizer.apply_gradients(gradients_of_generator, generator.TrainableVariables.ToArray);
discriminator_optimizer.apply_gradients(gradients_of_discriminator, discriminator.TrainableVariables.ToArray);
InC(fTrainCount);
finally
gradients_of_generator := [];
gradients_of_discriminator := [];
end;
except
ShowMessage('Raise on Error in TMnistGAN.Train_step in Train_step on epoch n#: '+fTrainCount.ToString);
fTrainCount := 8000;
end;
end;
procedure TMnistGAN.Train;
begin
discriminator := Make_Discriminator_model;
generator := Make_Generator_model;
var d_lr : single := 1e-4;
var g_lr : Single := 1e-4;
discriminator_optimizer := tf.keras.optimizers.Adam(d_lr);
generator_optimizer := tf.keras.optimizers.Adam(g_lr);
var showstep : Integer := 10;
var i : Integer := 0;
try
while i < EPOCHS do
begin
while (FileExists('dcgan\models\Model_' + IntToStr(i + 100) + '_g.weights')) and (FileExists('dcgan\models\Model_' + IntToStr(i + 100) + '_d.weights')) do
i := i + 100;
if (FileExists('dcgan\models\Model_' + i.ToString + '_g.weights')) and (FileExists('dcgan\models\Model_' + i.ToString + '_d.weights')) then
begin
logMsg.Add('Loading weights for epoch ' + i.ToString);
generator.load_weights('dcgan\models\Model_' + i.ToString + '_g.weights');
discriminator.save_weights('dcgan\models\Model_' + i.ToString + '_d.weights');
PredictImage(generator, i);
end else
begin
for var image_batch in train_dataset do
begin
train_step(image_batch.Value1.First) ;
if fTrainCount > 7000 then exit;
end;
if i mod 100 = 0 then
begin
generator.save_weights('dcgan\models\Model_' + i.ToString + '_g.weights');
discriminator.save_weights('dcgan\models\Model_' + i.ToString + '_d.weights');
end;
end;
inc(i);
end;
except
ShowMessage('Errors at Epoch: '+ i.ToString);
end;
end;
procedure TMnistGAN.PredictImage(g: Model; step: Integer);
begin
var r := 5;
var c := 5;
var sSize : TFShape := [ r * c, 100 ];
var noise := np.random.normal(@sSize);
noise := noise.astype(np.np_float32);
var tensor_result : TFTensor := g.predict(TFTensors.Create(noise)).first;
var gen_imgs := tensor_result.numpy;
SaveImage(gen_imgs, step);
end;
function TMnistGAN.cross_entropy(x: TTensor; y: TTensor) : TFTensor;
begin
var bce := tf.keras.losses.BinaryCrossentropy(true);
Result := bce.Call(x, y);
end;
function TMnistGAN.discriminator_loss(real_output: TFTensor; fake_output: TFTensor): TFTensor;
begin
var real_loss := cross_entropy(tf.ones_like(real_output), real_output);
var fake_loss := cross_entropy(tf.zeros_like(fake_output), fake_output);
var total_loss := TTensor(real_loss) + fake_loss;
Result := total_loss;
end;
function TMnistGAN.generator_loss(fake_output: TFTensor): TFTensor;