-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtraining_updated.py
1114 lines (937 loc) · 42.4 KB
/
training_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Train and test bidirectional language models.
'''
import os
import time
import json
import re
import tensorflow as tf
import numpy as np
from tensorflow.python.ops.init_ops import glorot_uniform_initializer
from .data import Vocabulary, UnicodeCharsVocabulary
DTYPE = 'float32'
DTYPE_INT = 'int64'
tf.logging.set_verbosity(tf.logging.INFO)
def print_variable_summary():
import pprint
variables = sorted([[v.name, v.get_shape()] for v in tf.global_variables()])
pprint.pprint(variables)
class LanguageModel(object):
'''
A class to build the tensorflow computational graph for NLMs
All hyperparameters and model configuration is specified in a dictionary
of 'options'.
is_training is a boolean used to control behavior of dropout layers
and softmax. Set to False for testing.
The LSTM cell is controlled by the 'lstm' key in options
Here is an example:
'lstm': {
'cell_clip': 5,
'dim': 4096,
'n_layers': 2,
'proj_clip': 5,
'projection_dim': 512,
'use_skip_connections': True},
'projection_dim' is assumed token embedding size and LSTM output size.
'dim' is the hidden state size.
Set 'dim' == 'projection_dim' to skip a projection layer.
'''
def __init__(self, options, is_training):
self.options = options
self.is_training = is_training
self.bidirectional = options.get('bidirectional', False)
# use word or char inputs?
self.char_inputs = 'char_cnn' in self.options
# for the loss function
self.share_embedding_softmax = options.get(
'share_embedding_softmax', False)
if self.char_inputs and self.share_embedding_softmax:
raise ValueError("Sharing softmax and embedding weights requires "
"word input")
self.sample_softmax = options.get('sample_softmax', True)
self._build()
def _build_word_embeddings(self):
n_tokens_vocab = self.options['n_tokens_vocab']
batch_size = self.options['batch_size']
unroll_steps = self.options['unroll_steps']
# LSTM options
projection_dim = self.options['lstm']['projection_dim']
# the input token_ids and word embeddings
self.token_ids = tf.placeholder(DTYPE_INT,
shape=(batch_size, unroll_steps),
name='token_ids')
# the word embeddings
with tf.device("/cpu:0"):
self.embedding_weights = tf.get_variable(
"embedding", [n_tokens_vocab, projection_dim],
dtype=DTYPE,
)
self.embedding = tf.nn.embedding_lookup(self.embedding_weights,
self.token_ids)
# if a bidirectional LM then make placeholders for reverse
# model and embeddings
if self.bidirectional:
self.token_ids_reverse = tf.placeholder(DTYPE_INT,
shape=(batch_size, unroll_steps),
name='token_ids_reverse')
with tf.device("/cpu:0"):
self.embedding_reverse = tf.nn.embedding_lookup(
self.embedding_weights, self.token_ids_reverse)
def _build_word_char_embeddings(self):
'''
options contains key 'char_cnn': {
'n_characters': 60,
# includes the start / end characters
'max_characters_per_token': 17,
'filters': [
[1, 32],
[2, 32],
[3, 64],
[4, 128],
[5, 256],
[6, 512],
[7, 512]
],
'activation': 'tanh',
# for the character embedding
'embedding': {'dim': 16}
# for highway layers
# if omitted, then no highway layers
'n_highway': 2,
}
'''
batch_size = self.options['batch_size']
unroll_steps = self.options['unroll_steps']
projection_dim = self.options['lstm']['projection_dim']
cnn_options = self.options['char_cnn']
filters = cnn_options['filters']
n_filters = sum(f[1] for f in filters)
max_chars = cnn_options['max_characters_per_token']
char_embed_dim = cnn_options['embedding']['dim']
n_chars = cnn_options['n_characters']
if cnn_options['activation'] == 'tanh':
activation = tf.nn.tanh
elif cnn_options['activation'] == 'relu':
activation = tf.nn.relu
# the input character ids
self.tokens_characters = tf.placeholder(DTYPE_INT,
shape=(batch_size, unroll_steps, max_chars),
name='tokens_characters')
# the character embeddings
with tf.device("/cpu:0"):
self.embedding_weights = tf.get_variable(
"char_embed", [n_chars, char_embed_dim],
dtype=DTYPE,
initializer=tf.random_uniform_initializer(-1.0, 1.0)
)
# shape (batch_size, unroll_steps, max_chars, embed_dim)
self.char_embedding = tf.nn.embedding_lookup(self.embedding_weights,
self.tokens_characters)
if self.bidirectional:
self.tokens_characters_reverse = tf.placeholder(DTYPE_INT,
shape=(batch_size, unroll_steps, max_chars),
name='tokens_characters_reverse')
self.char_embedding_reverse = tf.nn.embedding_lookup(
self.embedding_weights, self.tokens_characters_reverse)
# the convolutions
def make_convolutions(inp, reuse):
with tf.variable_scope('CNN', reuse=reuse) as scope:
convolutions = []
for i, (width, num) in enumerate(filters):
if cnn_options['activation'] == 'relu':
# He initialization for ReLU activation
# with char embeddings init between -1 and 1
#w_init = tf.random_normal_initializer(
# mean=0.0,
# stddev=np.sqrt(2.0 / (width * char_embed_dim))
#)
# Kim et al 2015, +/- 0.05
w_init = tf.random_uniform_initializer(
minval=-0.05, maxval=0.05)
elif cnn_options['activation'] == 'tanh':
# glorot init
w_init = tf.random_normal_initializer(
mean=0.0,
stddev=np.sqrt(1.0 / (width * char_embed_dim))
)
w = tf.get_variable(
"W_cnn_%s" % i,
[1, width, char_embed_dim, num],
initializer=w_init,
dtype=DTYPE)
b = tf.get_variable(
"b_cnn_%s" % i, [num], dtype=DTYPE,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(
inp, w,
strides=[1, 1, 1, 1],
padding="VALID") + b
# now max pool
conv = tf.nn.max_pool(
conv, [1, 1, max_chars-width+1, 1],
[1, 1, 1, 1], 'VALID')
# activation
conv = activation(conv)
conv = tf.squeeze(conv, squeeze_dims=[2])
convolutions.append(conv)
return tf.concat(convolutions, 2)
# for first model, this is False, for others it's True
reuse = tf.get_variable_scope().reuse
embedding = make_convolutions(self.char_embedding, reuse)
self.token_embedding_layers = [embedding]
if self.bidirectional:
# re-use the CNN weights from forward pass
embedding_reverse = make_convolutions(
self.char_embedding_reverse, True)
# for highway and projection layers:
# reshape from (batch_size, n_tokens, dim) to
n_highway = cnn_options.get('n_highway')
use_highway = n_highway is not None and n_highway > 0
use_proj = n_filters != projection_dim
if use_highway or use_proj:
embedding = tf.reshape(embedding, [-1, n_filters])
if self.bidirectional:
embedding_reverse = tf.reshape(embedding_reverse,
[-1, n_filters])
# set up weights for projection
if use_proj:
assert n_filters > projection_dim
with tf.variable_scope('CNN_proj') as scope:
W_proj_cnn = tf.get_variable(
"W_proj", [n_filters, projection_dim],
initializer=tf.random_normal_initializer(
mean=0.0, stddev=np.sqrt(1.0 / n_filters)),
dtype=DTYPE)
b_proj_cnn = tf.get_variable(
"b_proj", [projection_dim],
initializer=tf.constant_initializer(0.0),
dtype=DTYPE)
# apply highways layers
def high(x, ww_carry, bb_carry, ww_tr, bb_tr):
carry_gate = tf.nn.sigmoid(tf.matmul(x, ww_carry) + bb_carry)
transform_gate = tf.nn.relu(tf.matmul(x, ww_tr) + bb_tr)
return carry_gate * transform_gate + (1.0 - carry_gate) * x
if use_highway:
highway_dim = n_filters
for i in range(n_highway):
with tf.variable_scope('CNN_high_%s' % i) as scope:
W_carry = tf.get_variable(
'W_carry', [highway_dim, highway_dim],
# glorit init
initializer=tf.random_normal_initializer(
mean=0.0, stddev=np.sqrt(1.0 / highway_dim)),
dtype=DTYPE)
b_carry = tf.get_variable(
'b_carry', [highway_dim],
initializer=tf.constant_initializer(-2.0),
dtype=DTYPE)
W_transform = tf.get_variable(
'W_transform', [highway_dim, highway_dim],
initializer=tf.random_normal_initializer(
mean=0.0, stddev=np.sqrt(1.0 / highway_dim)),
dtype=DTYPE)
b_transform = tf.get_variable(
'b_transform', [highway_dim],
initializer=tf.constant_initializer(0.0),
dtype=DTYPE)
embedding = high(embedding, W_carry, b_carry,
W_transform, b_transform)
if self.bidirectional:
embedding_reverse = high(embedding_reverse,
W_carry, b_carry,
W_transform, b_transform)
self.token_embedding_layers.append(
tf.reshape(embedding,
[batch_size, unroll_steps, highway_dim])
)
# finally project down to projection dim if needed
if use_proj:
embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn
if self.bidirectional:
embedding_reverse = tf.matmul(embedding_reverse, W_proj_cnn) \
+ b_proj_cnn
self.token_embedding_layers.append(
tf.reshape(embedding,
[batch_size, unroll_steps, projection_dim])
)
# reshape back to (batch_size, tokens, dim)
if use_highway or use_proj:
shp = [batch_size, unroll_steps, projection_dim]
embedding = tf.reshape(embedding, shp)
if self.bidirectional:
embedding_reverse = tf.reshape(embedding_reverse, shp)
# at last assign attributes for remainder of the model
self.embedding = embedding
if self.bidirectional:
self.embedding_reverse = embedding_reverse
def _build(self):
# size of input options
n_tokens_vocab = self.options['n_tokens_vocab']
batch_size = self.options['batch_size']
unroll_steps = self.options['unroll_steps']
# LSTM options
lstm_dim = self.options['lstm']['dim']
projection_dim = self.options['lstm']['projection_dim']
n_lstm_layers = self.options['lstm'].get('n_layers', 1)
dropout = self.options['dropout']
keep_prob = 1.0 - dropout
if self.char_inputs:
self._build_word_char_embeddings()
else:
self._build_word_embeddings()
# now the LSTMs
# these will collect the initial states for the forward
# (and reverse LSTMs if we are doing bidirectional)
self.init_lstm_state = []
self.final_lstm_state = []
# get the LSTM inputs
if self.bidirectional:
lstm_inputs = [self.embedding, self.embedding_reverse]
else:
lstm_inputs = [self.embedding]
# now compute the LSTM outputs
cell_clip = self.options['lstm'].get('cell_clip')
proj_clip = self.options['lstm'].get('proj_clip')
use_skip_connections = self.options['lstm'].get(
'use_skip_connections')
if use_skip_connections:
print("USING SKIP CONNECTIONS")
lstm_outputs = []
for lstm_num, lstm_input in enumerate(lstm_inputs):
lstm_cells = []
for i in range(n_lstm_layers):
if projection_dim < lstm_dim:
# are projecting down output
lstm_cell = tf.nn.rnn_cell.LSTMCell(
lstm_dim, num_proj=projection_dim,
cell_clip=cell_clip, proj_clip=proj_clip)
else:
lstm_cell = tf.nn.rnn_cell.LSTMCell(
lstm_dim,
cell_clip=cell_clip, proj_clip=proj_clip)
if use_skip_connections:
# ResidualWrapper adds inputs to outputs
if i == 0:
# don't add skip connection from token embedding to
# 1st layer output
pass
else:
# add a skip connection
lstm_cell = tf.nn.rnn_cell.ResidualWrapper(lstm_cell)
# add dropout
if self.is_training:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell,
input_keep_prob=keep_prob)
lstm_cells.append(lstm_cell)
if n_lstm_layers > 1:
lstm_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)
else:
lstm_cell = lstm_cells[0]
with tf.control_dependencies([lstm_input]):
self.init_lstm_state.append(
lstm_cell.zero_state(batch_size, DTYPE))
# NOTE: this variable scope is for backward compatibility
# with existing models...
if self.bidirectional:
with tf.variable_scope('RNN_%s' % lstm_num):
_lstm_output_unpacked, final_state = tf.nn.static_rnn(
lstm_cell,
tf.unstack(lstm_input, axis=1),
initial_state=self.init_lstm_state[-1])
else:
_lstm_output_unpacked, final_state = tf.nn.static_rnn(
lstm_cell,
tf.unstack(lstm_input, axis=1),
initial_state=self.init_lstm_state[-1])
self.final_lstm_state.append(final_state)
# (batch_size * unroll_steps, 512)
lstm_output_flat = tf.reshape(
tf.stack(_lstm_output_unpacked, axis=1), [-1, projection_dim])
if self.is_training:
# add dropout to output
lstm_output_flat = tf.nn.dropout(lstm_output_flat,
keep_prob)
tf.add_to_collection('lstm_output_embeddings',
_lstm_output_unpacked)
lstm_outputs.append(lstm_output_flat)
self._build_loss(lstm_outputs)
def _build_loss(self, lstm_outputs):
'''
Create:
self.total_loss: total loss op for training
self.softmax_W, softmax_b: the softmax variables
self.next_token_id / _reverse: placeholders for gold input
'''
batch_size = self.options['batch_size']
unroll_steps = self.options['unroll_steps']
n_tokens_vocab = self.options['n_tokens_vocab']
# DEFINE next_token_id and *_reverse placeholders for the gold input
def _get_next_token_placeholders(suffix):
name = 'next_token_id' + suffix
id_placeholder = tf.placeholder(DTYPE_INT,
shape=(batch_size, unroll_steps),
name=name)
return id_placeholder
# get the window and weight placeholders
self.next_token_id = _get_next_token_placeholders('')
if self.bidirectional:
self.next_token_id_reverse = _get_next_token_placeholders(
'_reverse')
# DEFINE THE SOFTMAX VARIABLES
# get the dimension of the softmax weights
# softmax dimension is the size of the output projection_dim
softmax_dim = self.options['lstm']['projection_dim']
# the output softmax variables -- they are shared if bidirectional
if self.share_embedding_softmax:
# softmax_W is just the embedding layer
self.softmax_W = self.embedding_weights
with tf.variable_scope('softmax'), tf.device('/cpu:0'):
# Glorit init (std=(1.0 / sqrt(fan_in))
softmax_init = tf.random_normal_initializer(0.0,
1.0 / np.sqrt(softmax_dim))
if not self.share_embedding_softmax:
self.softmax_W = tf.get_variable(
'W', [n_tokens_vocab, softmax_dim],
dtype=DTYPE,
initializer=softmax_init
)
self.softmax_b = tf.get_variable(
'b', [n_tokens_vocab],
dtype=DTYPE,
initializer=tf.constant_initializer(0.0))
# now calculate losses
# loss for each direction of the LSTM
self.individual_losses = []
if self.bidirectional:
next_ids = [self.next_token_id, self.next_token_id_reverse]
else:
next_ids = [self.next_token_id]
for id_placeholder, lstm_output_flat in zip(next_ids, lstm_outputs):
# flatten the LSTM output and next token id gold to shape:
# (batch_size * unroll_steps, softmax_dim)
# Flatten and reshape the token_id placeholders
next_token_id_flat = tf.reshape(id_placeholder, [-1, 1])
with tf.control_dependencies([lstm_output_flat]):
if self.is_training and self.sample_softmax:
losses = tf.nn.sampled_softmax_loss(
self.softmax_W, self.softmax_b,
next_token_id_flat, lstm_output_flat,
self.options['n_negative_samples_batch'],
self.options['n_tokens_vocab'],
num_true=1)
else:
# get the full softmax loss
output_scores = tf.matmul(
lstm_output_flat,
tf.transpose(self.softmax_W)
) + self.softmax_b
# NOTE: tf.nn.sparse_softmax_cross_entropy_with_logits
# expects unnormalized output since it performs the
# softmax internally
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=output_scores,
labels=tf.squeeze(next_token_id_flat, squeeze_dims=[1])
)
self.individual_losses.append(tf.reduce_mean(losses))
# now make the total loss -- it's the mean of the individual losses
if self.bidirectional:
self.total_loss = 0.5 * (self.individual_losses[0]
+ self.individual_losses[1])
else:
self.total_loss = self.individual_losses[0]
def average_gradients(tower_grads, batch_size, options):
# calculate average gradient for each shared variable across all GPUs
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
# We need to average the gradients across each GPU.
g0, v0 = grad_and_vars[0]
if g0 is None:
# no gradient for this variable, skip it
average_grads.append((g0, v0))
continue
if isinstance(g0, tf.IndexedSlices):
# If the gradient is type IndexedSlices then this is a sparse
# gradient with attributes indices and values.
# To average, need to concat them individually then create
# a new IndexedSlices object.
indices = []
values = []
for g, v in grad_and_vars:
indices.append(g.indices)
values.append(g.values)
all_indices = tf.concat(indices, 0)
avg_values = tf.concat(values, 0) / len(grad_and_vars)
# deduplicate across indices
av, ai = _deduplicate_indexed_slices(avg_values, all_indices)
grad = tf.IndexedSlices(av, ai, dense_shape=g0.dense_shape)
else:
# a normal tensor can just do a simple average
grads = []
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# the Variables are redundant because they are shared
# across towers. So.. just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
assert len(average_grads) == len(list(zip(*tower_grads)))
return average_grads
def summary_gradient_updates(grads, opt, lr):
'''get summary ops for the magnitude of gradient updates'''
# strategy:
# make a dict of variable name -> [variable, grad, adagrad slot]
vars_grads = {}
for v in tf.trainable_variables():
vars_grads[v.name] = [v, None, None]
for g, v in grads:
vars_grads[v.name][1] = g
vars_grads[v.name][2] = opt.get_slot(v, 'accumulator')
# now make summaries
ret = []
for vname, (v, g, a) in vars_grads.items():
if g is None:
continue
if isinstance(g, tf.IndexedSlices):
# a sparse gradient - only take norm of params that are updated
values = tf.gather(v, g.indices)
updates = lr * g.values
if a is not None:
updates /= tf.sqrt(tf.gather(a, g.indices))
else:
values = v
updates = lr * g
if a is not None:
updates /= tf.sqrt(a)
values_norm = tf.sqrt(tf.reduce_sum(v * v)) + 1.0e-7
updates_norm = tf.sqrt(tf.reduce_sum(updates * updates))
ret.append(
tf.summary.scalar('UPDATE/' + vname.replace(":", "_"), updates_norm / values_norm))
return ret
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(
values, new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
def _get_feed_dict_from_X(X, start, end, model, char_inputs, bidirectional):
feed_dict = {}
if not char_inputs:
token_ids = X['token_ids'][start:end]
feed_dict[model.token_ids] = token_ids
else:
# character inputs
char_ids = X['tokens_characters'][start:end]
feed_dict[model.tokens_characters] = char_ids
if bidirectional:
if not char_inputs:
feed_dict[model.token_ids_reverse] = \
X['token_ids_reverse'][start:end]
else:
feed_dict[model.tokens_characters_reverse] = \
X['tokens_characters_reverse'][start:end]
# now the targets with weights
next_id_placeholders = [[model.next_token_id, '']]
if bidirectional:
next_id_placeholders.append([model.next_token_id_reverse, '_reverse'])
for id_placeholder, suffix in next_id_placeholders:
name = 'next_token_id' + suffix
feed_dict[id_placeholder] = X[name][start:end]
return feed_dict
def train(options, data, n_gpus, tf_save_dir, tf_log_dir,
restart_ckpt_file=None):
# not restarting so save the options
if restart_ckpt_file is None:
with open(os.path.join(tf_save_dir, 'options.json'), 'w') as fout:
fout.write(json.dumps(options))
with tf.device('/cpu:0'):
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# set up the optimizer
lr = options.get('learning_rate', 0.2)
opt = tf.train.AdagradOptimizer(learning_rate=lr,
initial_accumulator_value=1.0)
# calculate the gradients on each GPU
tower_grads = []
models = []
train_perplexity = tf.get_variable(
'train_perplexity', [],
initializer=tf.constant_initializer(0.0), trainable=False)
norm_summaries = []
for k in range(n_gpus):
with tf.device('/gpu:%d' % k):
with tf.variable_scope('lm', reuse=k > 0):
# calculate the loss for one model replica and get
# lstm states
model = LanguageModel(options, True)
loss = model.total_loss
models.append(model)
# get gradients
grads = opt.compute_gradients(
loss * options['unroll_steps'],
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE,
)
tower_grads.append(grads)
# keep track of loss across all GPUs
train_perplexity += loss
print_variable_summary()
# calculate the mean of each gradient across all GPUs
grads = average_gradients(tower_grads, options['batch_size'], options)
grads, norm_summary_ops = clip_grads(grads, options, True, global_step)
norm_summaries.extend(norm_summary_ops)
# log the training perplexity
train_perplexity = tf.exp(train_perplexity / n_gpus)
perplexity_summmary = tf.summary.scalar(
'train_perplexity', train_perplexity)
# some histogram summaries. all models use the same parameters
# so only need to summarize one
histogram_summaries = [
tf.summary.histogram('token_embedding', models[0].embedding)
]
# tensors of the output from the LSTM layer
lstm_out = tf.get_collection('lstm_output_embeddings')
histogram_summaries.append(
tf.summary.histogram('lstm_embedding_0', lstm_out[0]))
if options.get('bidirectional', False):
# also have the backward embedding
histogram_summaries.append(
tf.summary.histogram('lstm_embedding_1', lstm_out[1]))
# apply the gradients to create the training operation
train_op = opt.apply_gradients(grads, global_step=global_step)
# histograms of variables
for v in tf.global_variables():
histogram_summaries.append(tf.summary.histogram(v.name.replace(":", "_"), v))
# get the gradient updates -- these aren't histograms, but we'll
# only update them when histograms are computed
histogram_summaries.extend(
summary_gradient_updates(grads, opt, lr))
saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)
summary_op = tf.summary.merge(
[perplexity_summmary] + norm_summaries
)
hist_summary_op = tf.summary.merge(histogram_summaries)
init = tf.initialize_all_variables()
# do the training loop
bidirectional = options.get('bidirectional', False)
with tf.Session(config=tf.ConfigProto(
allow_soft_placement=True)) as sess:
sess.run(init)
# load the checkpoint data if needed
if restart_ckpt_file is not None:
reader = tf.train.NewCheckpointReader(your_checkpoint_file)
cur_vars = reader.get_variable_to_shape_map()
exclude = ['the embedding layer name yo want to remove']
variables_to_restore = tf.contrib.slim.get_variables_to_restore(exclude=exclude)
loader = tf.train.Saver(variables_to_restore)
#loader = tf.train.Saver()
loader.save(sess,'/tmp')
loader.restore(sess, '/tmp')
with open(os.path.join(tf_save_dir, 'options.json'), 'w') as fout:
fout.write(json.dumps(options))
summary_writer = tf.summary.FileWriter(tf_log_dir, sess.graph)
# For each batch:
# Get a batch of data from the generator. The generator will
# yield batches of size batch_size * n_gpus that are sliced
# and fed for each required placeholer.
#
# We also need to be careful with the LSTM states. We will
# collect the final LSTM states after each batch, then feed
# them back in as the initial state for the next batch
batch_size = options['batch_size']
unroll_steps = options['unroll_steps']
n_train_tokens = options.get('n_train_tokens', 768648884)
n_tokens_per_batch = batch_size * unroll_steps * n_gpus
n_batches_per_epoch = int(n_train_tokens / n_tokens_per_batch)
n_batches_total = options['n_epochs'] * n_batches_per_epoch
print("Training for %s epochs and %s batches" % (
options['n_epochs'], n_batches_total))
# get the initial lstm states
init_state_tensors = []
final_state_tensors = []
for model in models:
init_state_tensors.extend(model.init_lstm_state)
final_state_tensors.extend(model.final_lstm_state)
char_inputs = 'char_cnn' in options
if char_inputs:
max_chars = options['char_cnn']['max_characters_per_token']
if not char_inputs:
feed_dict = {
model.token_ids:
np.zeros([batch_size, unroll_steps], dtype=np.int64)
for model in models
}
else:
feed_dict = {
model.tokens_characters:
np.zeros([batch_size, unroll_steps, max_chars],
dtype=np.int32)
for model in models
}
if bidirectional:
if not char_inputs:
feed_dict.update({
model.token_ids_reverse:
np.zeros([batch_size, unroll_steps], dtype=np.int64)
for model in models
})
else:
feed_dict.update({
model.tokens_characters_reverse:
np.zeros([batch_size, unroll_steps, max_chars],
dtype=np.int32)
for model in models
})
init_state_values = sess.run(init_state_tensors, feed_dict=feed_dict)
t1 = time.time()
data_gen = data.iter_batches(batch_size * n_gpus, unroll_steps)
for batch_no, batch in enumerate(data_gen, start=1):
# slice the input in the batch for the feed_dict
X = batch
feed_dict = {t: v for t, v in zip(
init_state_tensors, init_state_values)}
for k in range(n_gpus):
model = models[k]
start = k * batch_size
end = (k + 1) * batch_size
feed_dict.update(
_get_feed_dict_from_X(X, start, end, model,
char_inputs, bidirectional)
)
# This runs the train_op, summaries and the "final_state_tensors"
# which just returns the tensors, passing in the initial
# state tensors, token ids and next token ids
if batch_no % 1250 != 0:
ret = sess.run(
[train_op, summary_op, train_perplexity] +
final_state_tensors,
feed_dict=feed_dict
)
# first three entries of ret are:
# train_op, summary_op, train_perplexity
# last entries are the final states -- set them to
# init_state_values
# for next batch
init_state_values = ret[3:]
else:
# also run the histogram summaries
ret = sess.run(
[train_op, summary_op, train_perplexity, hist_summary_op] +
final_state_tensors,
feed_dict=feed_dict
)
init_state_values = ret[4:]
if batch_no % 1250 == 0:
summary_writer.add_summary(ret[3], batch_no)
if batch_no % 100 == 0:
# write the summaries to tensorboard and display perplexity
summary_writer.add_summary(ret[1], batch_no)
print("Batch %s, train_perplexity=%s" % (batch_no, ret[2]))
print("Total time: %s" % (time.time() - t1))
if (batch_no % 1250 == 0) or (batch_no == n_batches_total):
# save the model
checkpoint_path = os.path.join(tf_save_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=global_step)
if batch_no == n_batches_total:
# done training!
break
def clip_by_global_norm_summary(t_list, clip_norm, norm_name, variables):
# wrapper around tf.clip_by_global_norm that also does summary ops of norms
# compute norms
# use global_norm with one element to handle IndexedSlices vs dense
norms = [tf.global_norm([t]) for t in t_list]
# summary ops before clipping
summary_ops = []
for ns, v in zip(norms, variables):
name = 'norm_pre_clip/' + v.name.replace(":", "_")
summary_ops.append(tf.summary.scalar(name, ns))
# clip
clipped_t_list, tf_norm = tf.clip_by_global_norm(t_list, clip_norm)
# summary ops after clipping
norms_post = [tf.global_norm([t]) for t in clipped_t_list]
for ns, v in zip(norms_post, variables):
name = 'norm_post_clip/' + v.name.replace(":", "_")
summary_ops.append(tf.summary.scalar(name, ns))
summary_ops.append(tf.summary.scalar(norm_name, tf_norm))
return clipped_t_list, tf_norm, summary_ops
def clip_grads(grads, options, do_summaries, global_step):
# grads = [(grad1, var1), (grad2, var2), ...]
def _clip_norms(grad_and_vars, val, name):
# grad_and_vars is a list of (g, v) pairs
grad_tensors = [g for g, v in grad_and_vars]
vv = [v for g, v in grad_and_vars]
scaled_val = val
if do_summaries:
clipped_tensors, g_norm, so = clip_by_global_norm_summary(
grad_tensors, scaled_val, name, vv)
else:
so = []
clipped_tensors, g_norm = tf.clip_by_global_norm(
grad_tensors, scaled_val)
ret = []
for t, (g, v) in zip(clipped_tensors, grad_and_vars):
ret.append((t, v))
return ret, so
all_clip_norm_val = options['all_clip_norm_val']
ret, summary_ops = _clip_norms(grads, all_clip_norm_val, 'norm_grad')
assert len(ret) == len(grads)
return ret, summary_ops
def test(options, ckpt_file, data, batch_size=256):
'''
Get the test set perplexity!
'''
bidirectional = options.get('bidirectional', False)
char_inputs = 'char_cnn' in options
if char_inputs:
max_chars = options['char_cnn']['max_characters_per_token']
unroll_steps = 1
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
with tf.device('/gpu:0'), tf.variable_scope('lm'):
test_options = dict(options)
# NOTE: the number of tokens we skip in the last incomplete
# batch is bounded above batch_size * unroll_steps
test_options['batch_size'] = batch_size
test_options['unroll_steps'] = 1
model = LanguageModel(test_options, False)
# we use the "Saver" class to load the variables
loader = tf.train.Saver()
loader.restore(sess, ckpt_file)
# model.total_loss is the op to compute the loss
# perplexity is exp(loss)
init_state_tensors = model.init_lstm_state
final_state_tensors = model.final_lstm_state
if not char_inputs:
feed_dict = {
model.token_ids:
np.zeros([batch_size, unroll_steps], dtype=np.int64)
}
if bidirectional:
feed_dict.update({
model.token_ids_reverse:
np.zeros([batch_size, unroll_steps], dtype=np.int64)
})
else:
feed_dict = {
model.tokens_characters:
np.zeros([batch_size, unroll_steps, max_chars],
dtype=np.int32)
}
if bidirectional:
feed_dict.update({
model.tokens_characters_reverse:
np.zeros([batch_size, unroll_steps, max_chars],
dtype=np.int32)
})
init_state_values = sess.run(