forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUniqueCombinations.java
84 lines (68 loc) · 1.97 KB
/
UniqueCombinations.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/**
* This file shows you how to generate all the unique combinations of a set even though some
* elements may be repeated. For example, if your set is {2, 2, 3, 3, 3} and you care only about
* sets of size two (r = 2) then the unique sets are {{2,2}, {2,3}, {3,3}}.
*
* <p>Time Complexity: O( n choose r )
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.other;
import java.util.ArrayList;
import java.util.List;
public class UniqueCombinations {
public static void combinations(int[] set, int r) {
if (set == null) return;
if (r < 0) return;
// Sort the numbers so we can easily skip duplicates.
java.util.Arrays.sort(set);
boolean[] used = new boolean[set.length];
combinations(0, r, used, set);
}
private static void combinations(int at, int r, boolean[] used, int[] set) {
final int n = set.length;
// We select 'r' elements so we found a valid subset!
if (r == 0) {
List<Integer> subset = new ArrayList<>(r);
for (int i = 0; i < n; i++) if (used[i]) subset.add(set[i]);
System.out.println(subset);
} else {
for (int i = at; i < n; i++) {
// Since the elements are sorted we can skip duplicate
// elements to ensure the uniqueness of our output.
if (i > at && set[i - 1] == set[i]) continue;
used[i] = true;
combinations(i + 1, r - 1, used, set);
used[i] = false;
}
}
}
public static void main(String[] args) {
// Example #1
int r = 2;
int[] set = {2, 3, 3, 2, 3};
combinations(set, r);
// Prints:
// [2, 2]
// [2, 3]
// [3, 3]
r = 3;
set = new int[] {1, 2, 2, 2, 3, 3, 4, 4};
combinations(set, r);
// Prints:
// [1, 2, 2]
// [1, 2, 3]
// [1, 2, 4]
// [1, 3, 3]
// [1, 3, 4]
// [1, 4, 4]
// [2, 2, 2]
// [2, 2, 3]
// [2, 2, 4]
// [2, 3, 3]
// [2, 3, 4]
// [2, 4, 4]
// [3, 3, 4]
// [3, 4, 4]
}
}