This repository has been archived by the owner on Nov 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIMUClassifier.py
78 lines (64 loc) · 2.77 KB
/
IMUClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from torch import nn
from torch.nn import init
class IMUClassifier(nn.Module):
def __init__(self):
super().__init__()
conv_layers = []
# First Convolution Block with Relu and Batch Norm.
self.conv1 = nn.Conv2d(1, 8, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
self.relu1 = nn.ReLU()
self.bn1 = nn.BatchNorm2d(8)
init.kaiming_normal_(self.conv1.weight, a=0.1)
self.conv1.bias.data.zero_()
conv_layers += [self.conv1, self.relu1, self.bn1]
# Second Convolution Block
self.conv2 = nn.Conv2d(8, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.relu2 = nn.ReLU()
self.bn2 = nn.BatchNorm2d(16)
init.kaiming_normal_(self.conv2.weight, a=0.1)
self.conv2.bias.data.zero_()
conv_layers += [self.conv2, self.relu2, self.bn2]
# Third Convolution Block
self.conv3 = nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.relu3 = nn.ReLU()
self.bn3 = nn.BatchNorm2d(32)
init.kaiming_normal_(self.conv3.weight, a=0.1)
self.conv3.bias.data.zero_()
conv_layers += [self.conv3, self.relu3, self.bn3]
# Fourth Convolution Block
self.conv4 = nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.relu4 = nn.ReLU()
self.bn4 = nn.BatchNorm2d(64)
init.kaiming_normal_(self.conv4.weight, a=0.1)
self.conv4.bias.data.zero_()
conv_layers += [self.conv4, self.relu4, self.bn4]
# Fifth Convolution Block
self.conv5 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.relu5 = nn.ReLU()
self.bn5 = nn.BatchNorm2d(128)
init.kaiming_normal_(self.conv5.weight, a=0.1)
self.conv5.bias.data.zero_()
conv_layers += [self.conv5, self.relu5, self.bn5]
# Sixth Convolution Block
self.conv6 = nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.relu6 = nn.ReLU()
self.bn6 = nn.BatchNorm2d(256)
init.kaiming_normal_(self.conv6.weight, a=0.1)
self.conv6.bias.data.zero_()
conv_layers += [self.conv6, self.relu6, self.bn6]
# Linear Classifier
self.ap = nn.AdaptiveAvgPool2d(output_size=1)
self.lin = nn.Linear(in_features=256, out_features=10) # Set output labels
# Wrap the Convolutional Blocks
self.conv = nn.Sequential(*conv_layers)
# Forward pass computations
def forward(self, x):
# Run the convolutional blocks
x = self.conv(x)
# Adaptive pool and flatten for input to linear layer
x = self.ap(x)
x = x.view(x.shape[0], -1)
# Linear layer
x = self.lin(x)
# Final output
return x