forked from anliyuan/Ultralight-Digital-Human
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
125 lines (110 loc) · 4.05 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import os
import cv2
import torch
import numpy as np
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from unet import Model
# from unet2 import Model
# from unet_att import Model
import time
parser = argparse.ArgumentParser(description='Train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--asr', type=str, default="hubert")
parser.add_argument('--dataset', type=str, default="")
parser.add_argument('--audio_feat', type=str, default="")
parser.add_argument('--save_path', type=str, default="") # end with .mp4 please
parser.add_argument('--checkpoint', type=str, default="")
args = parser.parse_args()
checkpoint = args.checkpoint
save_path = args.save_path
dataset_dir = args.dataset
audio_feat_path = args.audio_feat
mode = args.asr
def get_audio_features(features, index):
left = index - 8
right = index + 8
pad_left = 0
pad_right = 0
if left < 0:
pad_left = -left
left = 0
if right > features.shape[0]:
pad_right = right - features.shape[0]
right = features.shape[0]
auds = torch.from_numpy(features[left:right])
if pad_left > 0:
auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0)
if pad_right > 0:
auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16]
return auds
audio_feats = np.load(audio_feat_path)
img_dir = os.path.join(dataset_dir, "full_body_img/")
lms_dir = os.path.join(dataset_dir, "landmarks/")
len_img = len(os.listdir(img_dir)) - 1
exm_img = cv2.imread(img_dir+"0.jpg")
h, w = exm_img.shape[:2]
if mode=="hubert":
video_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('M','J','P', 'G'), 25, (w, h))
if mode=="wenet":
video_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('M','J','P', 'G'), 20, (w, h))
step_stride = 0
img_idx = 0
net = Model(6, mode).cuda()
net.load_state_dict(torch.load(checkpoint))
net.eval()
for i in range(audio_feats.shape[0]):
if img_idx>len_img - 1:
step_stride = -1
if img_idx<1:
step_stride = 1
img_idx += step_stride
img_path = img_dir + str(img_idx)+'.jpg'
lms_path = lms_dir + str(img_idx)+'.lms'
img = cv2.imread(img_path)
lms_list = []
with open(lms_path, "r") as f:
lines = f.read().splitlines()
for line in lines:
arr = line.split(" ")
arr = np.array(arr, dtype=np.float32)
lms_list.append(arr)
lms = np.array(lms_list, dtype=np.int32)
xmin = lms[1][0]
ymin = lms[52][1]
xmax = lms[31][0]
width = xmax - xmin
ymax = ymin + width
crop_img = img[ymin:ymax, xmin:xmax]
h, w = crop_img.shape[:2]
crop_img = cv2.resize(crop_img, (168, 168), cv2.INTER_AREA)
crop_img_ori = crop_img.copy()
img_real_ex = crop_img[4:164, 4:164].copy()
img_real_ex_ori = img_real_ex.copy()
img_masked = cv2.rectangle(img_real_ex_ori,(5,5,150,145),(0,0,0),-1)
img_masked = img_masked.transpose(2,0,1).astype(np.float32)
img_real_ex = img_real_ex.transpose(2,0,1).astype(np.float32)
img_real_ex_T = torch.from_numpy(img_real_ex / 255.0)
img_masked_T = torch.from_numpy(img_masked / 255.0)
img_concat_T = torch.cat([img_real_ex_T, img_masked_T], axis=0)[None]
audio_feat = get_audio_features(audio_feats, i)
if mode=="hubert":
audio_feat = audio_feat.reshape(32,32,32)
if mode=="wenet":
audio_feat = audio_feat.reshape(256,16,32)
audio_feat = audio_feat[None]
audio_feat = audio_feat.cuda()
img_concat_T = img_concat_T.cuda()
with torch.no_grad():
pred = net(img_concat_T, audio_feat)[0]
pred = pred.cpu().numpy().transpose(1,2,0)*255
pred = np.array(pred, dtype=np.uint8)
crop_img_ori[4:164, 4:164] = pred
crop_img_ori = cv2.resize(crop_img_ori, (w, h))
img[ymin:ymax, xmin:xmax] = crop_img_ori
video_writer.write(img)
video_writer.release()
# ffmpeg -i test_video.mp4 -i test_audio.pcm -c:v libx264 -c:a aac result_test.mp4