You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
No, @gloriouskilka change didn't fix the problem as I just tried the change. I think the error can be avoided by additionally commenting out the line, but not sure if this is a good fix.
The error log is listed below.
Thank you.
[hxs@VM_0_7_centos Tacotron-2-Ray-newclips3-trainmodel-T2]$ python synthesize.py --model='Tacotron-2' --mode='live'
/home/hxs/anaconda3/lib/python3.6/site-packages/h5py/init.py:36: FutureWarning: Conversion of the second argument of issubdtype from
float
tonp.floating
isdeprecated. In future, it will be treated as
np.float64 == np.dtype(float).type
.from ._conv import register_converters as _register_converters
Using TensorFlow backend.
synthesize.py:82: UserWarning: Requested a live evaluation with Tacotron-2, Wavenet will not be used!
warn('Requested a live evaluation with Tacotron-2, Wavenet will not be used!')
Running End-to-End TTS Evaluation. Model: Tacotron-2
Synthesizing mel-spectrograms from text..
loaded model at logs-Tacotron-2/taco_pretrained/tacotron_model.ckpt-85000
Hyperparameters:
allow_clipping_in_normalization: True
attention_dim: 128
attention_filters: 32
attention_kernel: (31,)
cbhg_conv_channels: 128
cbhg_highway_units: 128
cbhg_highwaynet_layers: 4
cbhg_kernels: 8
cbhg_pool_size: 2
cbhg_projection: 256
cbhg_projection_kernel_size: 3
cbhg_rnn_units: 128
cin_channels: 80
cleaners: english_cleaners
clip_for_wavenet: True
clip_mels_length: True
cross_entropy_pos_weight: 20
cumulative_weights: True
decoder_layers: 2
decoder_lstm_units: 1024
embedding_dim: 512
enc_conv_channels: 512
enc_conv_kernel_size: (5,)
enc_conv_num_layers: 3
encoder_lstm_units: 256
fmax: 7600
fmin: 55
frame_shift_ms: None
freq_axis_kernel_size: 3
gate_channels: 256
gin_channels: -1
griffin_lim_iters: 60
hop_size: 275
input_type: raw
kernel_size: 3
layers: 20
leaky_alpha: 0.4
log_scale_min: -32.23619130191664
log_scale_min_gauss: -16.11809565095832
mask_decoder: False
mask_encoder: True
max_abs_value: 4.0
max_iters: 2000
max_mel_frames: 1000
max_time_sec: None
max_time_steps: 11000
min_level_db: -100
n_fft: 2048
n_speakers: 5
natural_eval: False
normalize_for_wavenet: True
num_freq: 1025
num_mels: 80
out_channels: 2
outputs_per_step: 1
postnet_channels: 512
postnet_kernel_size: (5,)
postnet_num_layers: 5
power: 1.5
predict_linear: True
preemphasis: 0.97
preemphasize: True
prenet_layers: [256, 256]
quantize_channels: 65536
ref_level_db: 20
rescale: True
rescaling_max: 0.999
residual_channels: 128
sample_rate: 22050
signal_normalization: True
silence_threshold: 2
skip_out_channels: 128
smoothing: False
split_on_cpu: True
stacks: 2
stop_at_any: True
symmetric_mels: True
tacotron_adam_beta1: 0.9
tacotron_adam_beta2: 0.999
tacotron_adam_epsilon: 1e-06
tacotron_batch_size: 32
tacotron_clip_gradients: True
tacotron_data_random_state: 1234
tacotron_decay_learning_rate: True
tacotron_decay_rate: 0.5
tacotron_decay_steps: 50000
tacotron_dropout_rate: 0.5
tacotron_final_learning_rate: 1e-05
tacotron_gpu_start_idx: 0
tacotron_initial_learning_rate: 0.001
tacotron_num_gpus: 1
tacotron_random_seed: 5339
tacotron_reg_weight: 1e-07
tacotron_scale_regularization: False
tacotron_start_decay: 50000
tacotron_swap_with_cpu: False
tacotron_synthesis_batch_size: 1
tacotron_teacher_forcing_decay_alpha: 0.0
tacotron_teacher_forcing_decay_steps: 280000
tacotron_teacher_forcing_final_ratio: 0.0
tacotron_teacher_forcing_init_ratio: 1.0
tacotron_teacher_forcing_mode: constant
tacotron_teacher_forcing_ratio: 1.0
tacotron_teacher_forcing_start_decay: 10000
tacotron_test_batches: None
tacotron_test_size: 0.05
tacotron_zoneout_rate: 0.1
train_with_GTA: False
trim_fft_size: 512
trim_hop_size: 128
trim_silence: True
trim_top_db: 23
upsample_activation: LeakyRelu
upsample_conditional_features: True
upsample_scales: [5, 5, 11]
upsample_type: 1D
use_bias: True
use_lws: False
use_speaker_embedding: True
wavenet_adam_beta1: 0.9
wavenet_adam_beta2: 0.999
wavenet_adam_epsilon: 1e-08
wavenet_batch_size: 8
wavenet_clip_gradients: False
wavenet_data_random_state: 1234
wavenet_decay_rate: 0.5
wavenet_decay_steps: 300000
wavenet_dropout: 0.05
wavenet_ema_decay: 0.9999
wavenet_gpu_start_idx: 0
wavenet_init_scale: 1.0
wavenet_learning_rate: 0.0001
wavenet_lr_schedule: exponential
wavenet_num_gpus: 1
wavenet_random_seed: 5339
wavenet_swap_with_cpu: False
wavenet_synthesis_batch_size: 20
wavenet_test_batches: None
wavenet_test_size: 0.0441
wavenet_warmup: 4000.0
wavenet_weight_normalization: False
win_size: 1100
Constructing model: Tacotron
WARNING:tensorflow:From /home/hxs/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn.py:430: calling reverse_sequence (from tensorflow.python.ops.array_ops) with
seq_dim is deprecated and will be removed in a future version.
Instructions for updating:
seq_dim is deprecated, use seq_axis instead
WARNING:tensorflow:From /home/hxs/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py:454: calling reverse_sequence (from tensorflow.python.ops.array_ops) with batch_dim is deprecated and will be removed in a future version.
Instructions for updating:
batch_dim is deprecated, use batch_axis instead
initialisation done /gpu:0
Initialized Tacotron model. Dimensions (? = dynamic shape):
Train mode: False
Eval mode: False
GTA mode: False
Synthesis mode: True
Input: (?, ?)
device: 0
embedding: (?, ?, 512)
enc conv out: (?, ?, 512)
encoder out: (?, ?, 512)
decoder out: (?, ?, 80)
residual out: (?, ?, 512)
projected residual out: (?, ?, 80)
mel out: (?, ?, 80)
linear out: (?, ?, 1025)
<stop_token> out: (?, ?)
Tacotron Parameters 29.016 Million.
Loading checkpoint: logs-Tacotron-2/taco_pretrained/tacotron_model.ckpt-85000
Hello, Welcome to the Live testing tool. Please type a message and I will try to read it!
Traceback (most recent call last):
File "synthesize.py", line 100, in
main()
File "synthesize.py", line 94, in main
synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences)
File "synthesize.py", line 36, in synthesize
wavenet_in_dir = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
File "/mnt/data/hxs/Tacotron-2-Ray-newclips3-trainmodel-T2/tacotron/synthesize.py", line 139, in tacotron_synthesize
run_live(args, checkpoint_path, hparams)
File "/mnt/data/hxs/Tacotron-2-Ray-newclips3-trainmodel-T2/tacotron/synthesize.py", line 27, in run_live
generate_fast(synth, greetings)
File "/mnt/data/hxs/Tacotron-2-Ray-newclips3-trainmodel-T2/tacotron/synthesize.py", line 15, in generate_fast
model.synthesize(text, None, None, None, None)
File "/mnt/data/hxs/Tacotron-2-Ray-newclips3-trainmodel-T2/tacotron/synthesizer.py", line 147, in synthesize
assert len(mels) == len(linears) == len(texts)
AssertionError
The text was updated successfully, but these errors were encountered: