forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvolutional NN Lasagne
71 lines (62 loc) · 2.07 KB
/
Convolutional NN Lasagne
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
### Convolutional Neural Network in Lasagne for MNIST
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import matplotlib.cm as cm
df=pd.read_csv('mnist_test_2k.csv',sep=',',header=1)
xx=np.transpose(df)
x0=np.array(xx[:785])
y_train=x0[0].astype(np.uint8)
a=np.delete(x0,(0),axis=0)
X=a.T
X_train0=X.reshape(2053,1,28,28)
X_train=X_train0.astype(np.uint8)
df=pd.read_csv('mnist_train_100.csv',sep=',',header=1)
xx=np.transpose(df)
x=np.array(xx[:785])
y_test=x[0].astype(np.uint8)
a2=np.delete(x,(0),axis=0)
X1=a2.T
X_test0=X1.reshape(98,1,28,28)
X_test=X_test0.astype(np.uint8)
CNN=NeuralNet(
layers=[('input',layers.InputLayer),
('conv2d1', layers.Conv2DLayer),
('maxpool1', layers.MaxPool2DLayer),
('conv2d2', layers.Conv2DLayer),
('maxpool2', layers.MaxPool2DLayer),
('dropout1', layers.DropoutLayer),
('dense', layers.DenseLayer),
('dropout2', layers.DropoutLayer),
('output', layers.DenseLayer),],
input_shape=(None,1,28, 28),
conv2d1_num_filters=32,
conv2d1_filter_size=(5, 5),
conv2d1_nonlinearity=lasagne.nonlinearities.rectify,
conv2d1_W=lasagne.init.GlorotUniform(),
maxpool1_pool_size=(2, 2),
conv2d2_num_filters=32,
conv2d2_filter_size=(5, 5),
conv2d2_nonlinearity=lasagne.nonlinearities.rectify,
maxpool2_pool_size=(2, 2),
dropout1_p=0.5,
dense_num_units=256,
dense_nonlinearity=lasagne.nonlinearities.rectify,
dropout2_p=0.5,
output_nonlinearity=lasagne.nonlinearities.softmax,
output_num_units=10,
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,
max_epochs=10,
verbose=1,)
nn = CNN.fit(X_train, y_train)
prediction = CNN.predict(X_test)
visualize.plot_conv_weights(CNN.layers_['conv2d1'])