forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData Augumentation Folder
114 lines (88 loc) · 3.09 KB
/
Data Augumentation Folder
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import cv2
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
img = load_img('Dogs.png')
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='/Volumes/16 DOS/Python/temp/Dogs', save_prefix='dog', save_format='jpeg'):
i += 1
if i > 10:
break
img = load_img('cats.png')
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='/Volumes/16 DOS/Python/temp/cats', save_prefix='cat', save_format='jpeg'):
i += 1
if i > 10:
break
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
K.set_image_dim_ordering('th')
model = Sequential()
model.add(Conv2D(20, 3, 3, input_shape=(3, 30, 30)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(20, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(20, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 10
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/Volumes/16 DOS/Python/temp', # this is the target directory
target_size=(30, 30), # all images will be resized to 30x30
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'/Volumes/16 DOS/Python/temp',
target_size=(30, 30),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
nb_epoch=10,
validation_data=validation_generator,nb_val_samples=20
,samples_per_epoch=20)
model.save_weights('first_try.hdf5')
import numpy as np
import cv2
image = cv2.imread('cats.png')
cv2.imshow("Original", image)
dim = (30,30)
resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
X_data=resized.reshape(1,3,30,30)
filename = "first_try.hdf5"
model.load_weights(filename)
model.compile(loss='binary_crossentropy', optimizer='rmsprop')
model.predict_classes(X_data)
'''Adapted from Keras blog: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html'''