forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGloVe Model
108 lines (86 loc) · 3.21 KB
/
GloVe Model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from keras.layers import Embedding
import os
texts = []
labels_index = {}
labels = []
for name in sorted(os.listdir('/Volumes/16 DOS/Python/text')):
path = os.path.join('/Volumes/16 DOS/Python/text', name)
if os.path.isdir(path):
label_id = len(labels_index)
labels_index[name] = label_id
for fname in sorted(os.listdir(path)):
fpath = os.path.join(path, fname)
f = open(fpath, encoding='latin-1')
t = f.read()
i = t.find('\n') # skip header
if 0 < i:
t = t[i:]
texts.append(t)
f.close()
labels.append(label_id)
print('Found %s texts.' % len(texts))
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
import numpy as np
MAX_NB_WORDS=50
MAX_SEQUENCE_LENGTH=20
VALIDATION_SPLIT=0.9
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
labels = np_utils.to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])
x_train = data[:-nb_validation_samples]
y_train = labels[:-nb_validation_samples]
x_val = data[-nb_validation_samples:]
y_val = labels[-nb_validation_samples:]
embeddings_index = {}
f = open('/Volumes/16 DOS/Python/text/text2/ZarathustraSmall.2.txt')
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:])
embeddings_index[word] = coefs
f.close()
print('Found %s word vectors.' % len(embeddings_index))
EMBEDDING_DIM=20
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
MAX_SEQUENCE_LENGTH=20
from keras.layers import Embedding, Conv1D,MaxPooling1D,Dense,Flatten
from keras.models import Sequential
from keras import backend as K
K.set_image_dim_ordering('th')
model=Sequential()
model.add(Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False))
model.add(Conv1D(128, 5, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Conv1D(128, 5, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(len(labels_index), activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
model.fit(x_train, y_train, validation_data=(x_val, y_val),
nb_epoch=2, batch_size=128)
model.predict_classes(x_train)
'''Adapted from https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html'''