forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNLP Twitter Streaming
240 lines (184 loc) · 8.58 KB
/
NLP Twitter Streaming
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import nltk
from nltk import sent_tokenize, word_tokenize, pos_tag
import matplotlib.pyplot as plt
from pylab import *
from bs4 import BeautifulSoup
import numpy as np
from nltk.stem import WordNetLemmatizer
import re
import pandas as pd
import time
import tweepy
from tweepy import OAuthHandler
from tweepy import Stream
from tweepy.streaming import StreamListener
import re
import matplotlib.animation as manimation
comp00=[]
consumer_key = '12345'
consumer_secret = '12345'
access_token = '12345-12345'
access_secret = '12345'
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)
api = tweepy.API(auth)
term='trump'
number_tweets=30
t=0
fig=plt.figure(figsize=(8,6))
ax1 = fig.add_subplot(1,1,1)
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Real-Time Mood Analysis in Twitter Streaming', artist='Rubens Zimbres',
comment='Real-Time Mood Analysis in Twitter Streaming')
writer = FFMpegWriter(fps=1, metadata=metadata,bitrate=-1,codec="libx264",extra_args=['-pix_fmt', 'yuv420p'])
with writer.saving(fig, "Twitter_REAL_Time_temp.mp4", 100):
while t<50:
data=[]
for status in tweepy.Cursor(api.search,q=term).items(number_tweets):
try:
URLless_string = re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', status.text)
data.append(URLless_string)
except:
pass
lemmatizer = WordNetLemmatizer()
text=data
sentences = sent_tokenize(str(text))
sentences2=sentences
tokens = word_tokenize(str(text))
tokens=[lemmatizer.lemmatize(tokens[i]) for i in range(0,len(tokens))]
tagged_tokens = pos_tag(tokens)
## NOUNS
text2 = word_tokenize(str(text))
is_noun = lambda pos: pos[:2] == 'NN'
b=nltk.pos_tag(text2)
nouns = [word for (word, pos) in nltk.pos_tag(text2) if is_noun(pos)]
V = set(nouns)
long_words1 = [w for w in tokens if 4<len(w) < 10]
fdist01 = nltk.FreqDist(long_words1)
a1=fdist01.most_common(40)
def lexical_diversity(text):
return len(set(text)) / len(text)
vocab = set(text)
vocab_size = len(vocab)
V = set(text)
long_words = [w for w in tokens if 4<len(w) < 13]
text2 = nltk.Text(word.lower() for word in long_words)
fdist1 = nltk.FreqDist(long_words)
a=fdist1.most_common(15)
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import matplotlib.pyplot as plt
from gensim import corpora
from string import punctuation
def strip_punctuation(s):
return ''.join(c for c in s if c not in punctuation)
documents=[strip_punctuation(re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '',sentences2[i])) for i in range(0,len(sentences2))]
stoplist = set('for a of the and to in is the he she on i will it its us as that at who be '.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
for document in long_words]
# remove words that appear only once
from collections import defaultdict
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
texts = [[token for token in text if frequency[token] > 1]
for text in texts]
dictionary = corpora.Dictionary(texts)
dictionary.save('/tmp/deerwester4.dict')
## VETOR DAS FRASES
corpus = [dictionary.doc2bow(text) for text in texts]
corpora.MmCorpus.serialize('/tmp/deerwester4.mm', corpus) # store to disk, for later use
from gensim import corpora, models, similarities
tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model
corpus_tfidf = tfidf[corpus]
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2)
corpus_lsi = lsi[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi
## COORDENADAS DOS TEXTOS
todas=[]
for doc in corpus_lsi: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly
todas.append(doc)
from gensim import corpora, models, similarities
dictionary = corpora.Dictionary.load('/tmp/deerwester4.dict')
corpus = corpora.MmCorpus('/tmp/deerwester4.mm') # comes from the first tutorial, "From strings to vectors"
lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2)
p=[]
for i in range(0,len(documents)):
doc1 = documents[i]
vec_bow2 = dictionary.doc2bow(doc1.lower().split())
vec_lsi2 = lsi[vec_bow2] # convert the query to LSI space
p.append(vec_lsi2)
index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it
index.save('/tmp/deerwester4.index')
index = similarities.MatrixSimilarity.load('/tmp/deerwester4.index')
#################
import gensim
import numpy as np
import matplotlib.colors as colors
import matplotlib.cm as cmx
import matplotlib as mpl
matrix1 = gensim.matutils.corpus2dense(p, num_terms=4)
matrix3=matrix1.T
from sklearn import manifold, datasets, decomposition, ensemble,discriminant_analysis, random_projection
def norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
X=norm(matrix3)
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0,perplexity=50,verbose=1,n_iter=1500)
X_tsne = X
### WORK HERE - COMO DESCOBRI QUE TINHA 3 CLUSTERS ???? SORT X_tsne
## DEFINE K-MEANS
from sklearn.cluster import KMeans
model3=KMeans(n_clusters=4,random_state=0)
model3.fit(X_tsne)
cc=model3.predict(X_tsne)
## ALSO TRY COM X PARA VER QUE TOPICO SELECIONA
tokens2 = word_tokenize(str(sentences2))
tokens2=[lemmatizer.lemmatize(tokens2[i]) for i in range(0,len(tokens2))]
long_words12 = [w for w in tokens2 if len(w) > 5]
fdist012 = nltk.FreqDist(long_words12)
a12=fdist012.most_common(5)
from matplotlib.colors import LinearSegmentedColormap
n_classes=4
colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1),(0,0,0)]
cm = LinearSegmentedColormap.from_list(
cc, colors, N=4)
cor=[colors[cc[i]] for i in range(0,len(cc))]
model = models.LdaModel(corpus, id2word=dictionary, num_topics=4)
### ACCUMULATE FEELINGS
from nltk.sentiment import SentimentAnalyzer
from nltk.sentiment.util import *
from nltk.sentiment.vader import SentimentIntensityAnalyzer as sia
sentim=sia()
cc0=[]
for sentence in documents:
cc0.append(sentim.polarity_scores(sentence))
neu=[]
neg=[]
for sentence in documents:
ss = sentim.polarity_scores(sentence)
for k in sorted(ss):
neg.append(ss[k])
neu.append(k)
f=int(len(neg)/4)
sent0=np.array(neu).reshape(f,4)
sent=np.array(neg).reshape(f,4)
comp0=sent.T[0]
comp00.append(comp0)
comp=np.concatenate(comp00)
positivos=len(np.where(np.array(comp)>0)[0])
neutros=len(np.where(np.array(comp)==0)[0])
negativos=len(np.where(np.array(comp)<0)[0])
time.sleep(1)
x = np.arange(0, len(comp), 1)
ax1.plot(np.cumsum(comp),linewidth=3,color='blue')
ax1.fill_between(x,np.cumsum(comp),0,where=np.cumsum(comp)<0,facecolor='red',alpha=.7)
ax1.fill_between(x,np.cumsum(comp),0,where=np.cumsum(comp)>0,facecolor='lawngreen',alpha=.7)
ax1.annotate('POSITIVE',(140,1.5),fontweight='bold')
ax1.annotate('NEGATIVE',(140,-3),fontweight='bold')
ax1.set_title("REAL-TIME Analysis of Mood in Twitter\n"+"Keyword: {}".format(term),fontweight='bold')
ax1.set_xlabel('TIME')
ax1.set_ylabel('MOOD')
writer.grab_frame()
ax1.clear()
time.sleep(1)
t=t+1