-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
89 lines (68 loc) · 2.43 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
# Load your trained model
# Necessary
# print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
#from keras.applications.resnet50 import ResNet50
#model = ResNet50(weights='imagenet')
#model.save('')
#model_best = load_model('papaya.hdf5',compile = False)
print('Model loaded. Check http://127.0.0.1:5000/')
def predict_class(model, images, show = True):
food_list = ['anthracnose','black_spot','phytophthora','powdery_mildew','ring_spot']
for img in images:
img = image.load_img(img, target_size=(32,32))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img /= 255.
print("In lopp of prdict class")
pred = model.predict(img)
index = np.argmax(pred)
pred_value = food_list[index]
print("in predict class")
return pred_value
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
food_list = ['anthracnose','black_spot','phytophthora','powdery_mildew','ring_spot']
model_best = load_model('papaya.hdf5',compile = False)
images = []
images.append(file_path)
# Make prediction
preds = predict_class(model_best , images)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
# Convert to string
return preds
return None
if __name__ == '__main__':
app.run(debug=True)