-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_augmentation_PS_random.py
178 lines (133 loc) · 5.69 KB
/
data_augmentation_PS_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import torch
import torchaudio
import numpy as np
import pandas as pd
from torchaudio.transforms import (
MelSpectrogram,
TimeStretch,
PitchShift,
Spectrogram,
InverseSpectrogram,
)
import matplotlib.pyplot as plt
import random
from tqdm import tqdm
from utils import log_mels
# tutorial considered
def get_spectrogram(waveform, n_fft=400, win_len=None, hop_len=None, power=2.0):
spectrogram = Spectrogram(
n_fft=n_fft,
win_length=win_len,
hop_length=hop_len,
center=True,
pad_mode="reflect",
power=power,
)
return spectrogram(waveform)
def plot_figure(data, filename=None):
# Plot Mel Spectrogram
plt.figure(figsize=(8, 4))
# take the first audio of each frame
plt.imshow(data, cmap="viridis", aspect="auto", origin="lower"), plt.colorbar()
plt.title("Mel Spectrogram")
plt.xlabel("Time")
plt.ylabel("Mel Frequency")
plt.savefig(filename)
plt.close()
def pad_to(signal, num_samples):
length_signal = signal.shape[1]
# cut if necessary
if length_signal > num_samples:
signal = signal[:, :num_samples]
# pad if necessary
if signal.shape[1] < num_samples:
num_missing_samples = num_samples - length_signal
last_dim_padding = (0, num_missing_samples)
# Pad signal by replicating it (LUCA)
N_replicas = int(num_missing_samples / length_signal) + 1
signal_padded = signal.repeat(1, N_replicas + 1)
signal_padded = signal_padded[:, :num_samples]
signal = signal_padded
return signal
def process_audio(audio_sample_path, target_sample_rate, num_samples):
signal, sr = torchaudio.load(audio_sample_path)
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
signal = resampler(signal)
# make the signal mono if it is not
if signal.shape[0] > 1:
signal = torch.mean(signal, dim=0, keepdim=True)
# pad the signal in necessary
signal = pad_to(signal, num_samples)
return signal
if __name__ == "__main__":
metadata_file_real = "/nas/home/fronchini/EUSIPCO/urban-sound-class/UrbanSound8K/metadata/UrbanSound8K.csv"
# metadata_file_fake= "/nas/home/fronchini/EUSIPCO/urban-sound-class/audio_generation/AUDIOGEN_gpt"
audio_dir_real = "/nas/home/fronchini/EUSIPCO/urban-sound-class/UrbanSound8K/audio"
# audio_dir_fake= "/nas/home/fronchini/EUSIPCO/urban-sound-class/audio_generation/AUDIOGEN_gpt"
# test folder to save the time for the test we are doing on two audio files only
# test_folder = '/nas/home/fronchini/EUSIPCO/urban-sound-class/UrbanSound8K/test'
# os.makedirs(test_folder, exist_ok=True)
# parrameters
mel_bands = 128
target_sample_rate = 16000
num_samples = target_sample_rate * 4 # sample rate * audio_max_lenght
n_window = 1204
n_filters = 2048
hop_length = 1024
n_window = 1024
f_min = 0
f_max = 8000
annotations_real = pd.read_csv(metadata_file_real)
annotations_augmented = annotations_real.copy()
paths_list = annotations_real.apply(
lambda row: os.path.join(audio_dir_real, f"fold{row[5]}", row[0]), axis=1
)
pitch_shift_values = [-2, -1, 1, 2]
mel_spectogram = MelSpectrogram(
sample_rate=target_sample_rate,
n_fft=n_window,
win_length=n_window,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=mel_bands,
)
for index in tqdm(range(len(paths_list))):
# read audio
signal = process_audio(paths_list[index], target_sample_rate, num_samples)
##
# Pitch Shift is applied directly to the audio waveform
##
# selecting a random values for the picth shift
pitch_shift_selected = random.choice(pitch_shift_values)
# print(f"Random values selected for the picth shift: {pitch_shift_selected}")
file_audio_PS_path = paths_list[index].replace(
".wav", f"_PS_{pitch_shift_selected}_{mel_bands}.npy"
)
if not os.path.exists(file_audio_PS_path):
# https://pytorch.org/audio/stable/generated/torchaudio.transforms.PitchShift.html#torchaudio.transforms.PitchShift
# using the same values of the mel spectogram for the pitch shift
pitch_shift = PitchShift(
sample_rate=target_sample_rate, n_steps=pitch_shift_selected
)
signal_pitch_shifthed = pitch_shift(signal)
# save the file to listen to it
# file_PS_signal = os.path.join(test_folder, f'file_{index}_PS_{pitch_shift_selected}_{mel_bands}.wav')
# torchaudio.save(file_PS_signal, signal_pitch_shifthed, target_sample_rate)
# log-mel spectogram applied to the picth shifted signal
signal_pitch_shifthed = mel_spectogram(signal_pitch_shifthed)
signal_pitch_shifthed = log_mels(signal_pitch_shifthed, "GPU")
# plot figure
# plot_file_path = os.path.join(test_folder, f'file_{index}_PS_{pitch_shift_selected}_{mel_bands}.png')
# plot_figure(signal_pitch_shifthed[0].detach().numpy(), plot_file_path)
# the file will need to be saved as npy file
np.save(file_audio_PS_path, signal_pitch_shifthed.detach().numpy())
index_file = paths_list[index].split("/")[-1]
annotations_augmented.loc[
annotations_augmented["slice_file_name"] == index_file, "slice_file_name"
] = file_audio_PS_path
# save the metadata
augmented_PS_annotations = f"/nas/home/fronchini/EUSIPCO/urban-sound-class/UrbanSound8K/metadata/UrbanSound8K_PS2_{mel_bands}.csv"
annotations_augmented.to_csv(augmented_PS_annotations, index=False)