-
Notifications
You must be signed in to change notification settings - Fork 677
/
Copy pathNLP Convolutional Text
118 lines (98 loc) · 3.79 KB
/
NLP Convolutional Text
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from gensim import utils
from gensim.models.doc2vec import LabeledSentence
from gensim.models import Doc2Vec
import numpy
import numpy as np
from random import shuffle
from sklearn.linear_model import LogisticRegression
from __future__ import print_function
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Highway
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
from keras.utils.np_utils import to_categorical
from keras.optimizers import SGD
K.set_image_dim_ordering('th')
class LabeledLineSentence(object):
def __init__(self, sources):
self.sources = sources
flipped = {}
for key, value in sources.items():
if value not in flipped:
flipped[value] = [key]
else:
raise Exception('Non-unique prefix encountered')
def __iter__(self):
for source, prefix in self.sources.items():
with utils.smart_open(source) as fin:
for item_no, line in enumerate(fin):
yield LabeledSentence(utils.to_unicode(line).split(), [prefix + '_%s' % item_no])
def to_array(self):
self.sentences = []
for source, prefix in self.sources.items():
with utils.smart_open(source) as fin:
for item_no, line in enumerate(fin):
self.sentences.append(LabeledSentence(utils.to_unicode(line).split(), [prefix + '_%s' % item_no]))
return self.sentences
def sentences_perm(self):
shuffle(self.sentences)
return self.sentences
sources = {'train-neg.txt':'TRAIN_NEG', 'train-pos.txt':'TRAIN_POS', 'train-unsup.txt':'TRAIN_UNS', 'test-pos.txt':'TEST_POS','test-neg2.txt':'TEST_NEG'}
sentences = LabeledLineSentence(sources)
sentences
model = Doc2Vec(min_count=1, window=5, size=16, sample=1e-4, negative=5, workers=8)
model.build_vocab(sentences.to_array())
model.save('./imdb.d2v')
model = Doc2Vec.load('./imdb.d2v')
model.most_similar('good')
sentences.to_array()
train_arrays = numpy.zeros((8, 16))
for i in range(7):
prefix_train_pos = 'TRAIN_POS_' + str(i)
prefix_train_neg = 'TRAIN_NEG_' + str(i)
train_arrays[i] = model.docvecs[prefix_train_pos]
train_arrays[1 + i] = model.docvecs[prefix_train_neg]
test_arrays = numpy.zeros((8, 16))
for i in range(7):
prefix_test_pos = 'TEST_POS_' + str(i)
test_arrays[i] = model.docvecs[prefix_test_pos]
batch_size = 1
nb_classes = 2
nb_epoch = 10
nb_filters = 12
pool_size = (2, 2)
kernel_size = (2, 2)
X_train= train_arrays.astype('float32')
X_train=X_train.reshape(2,1,8,8)
X_test = test_arrays.astype('float32')
X_test=X_test.reshape(2,1,8,8)
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
Y_train = [[1,0],[0,1]]
test_labels = [[1,0],[0,1]]
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=(1,8,8)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(2))
model.add(Highway())
model.add(Activation('sigmoid'))
sgd = SGD(lr=0.01, decay=5e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1)
print('Test accuracy:', np.sum(model.predict_classes(X_test)-test_labels==0)/len(test_labels))
print(model.predict_classes(X_test))
print(test_labels)