-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
73 lines (63 loc) · 2.29 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Python packages
import keras.optimizers as kopt
from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping, CSVLogger
import pandas as pd
import pathlib
# Train the model
def training(
model,
X_train, y_train,
X_val, y_val,
model_name,
save_parameters,
learning_rate=0.1,
epochs=100,
):
# Parameters
loss = 'binary_crossentropy'
optimizer = kopt.Adam(learning_rate)
batch_size = 256
monitor = 'val_loss'
# Callbacks parameters
factor = 0.5
patience_RLR = 10
patience_ES = 15
min_lr = 1e-6
# Paths
model_path = f'results/{model_name}/model.h5'
csv_path = f'results/{model_name}/history.csv'
csv_path_parameter = f'results/{model_name}/parameter.csv'
# Convert strings to Path type
csv_path = pathlib.Path(csv_path)
model_path = pathlib.Path(model_path)
csv_path_parameter = pathlib.Path(csv_path_parameter)
# Make sure the files are saved in a folder that exists
csv_path.parent.mkdir(parents=True, exist_ok=True)
model_path.parent.mkdir(parents=True, exist_ok=True)
csv_path_parameter.parent.mkdir(parents=True, exist_ok=True)
# Callbacks
callbacks = [
ReduceLROnPlateau(monitor=monitor, factor=factor, patience=patience_RLR, mode='min', min_lr=min_lr),
ModelCheckpoint(model_path, monitor=monitor, mode='auto', verbose=1, save_best_only=True),
CSVLogger(csv_path, separator=",", append=True),
EarlyStopping(monitor=monitor, mode='auto', verbose=1, patience=patience_ES),
]
# Compile the model
model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])
# Training the model
print('Batch Size:', batch_size)
history = model.fit(
X_train, y_train,
validation_data=(X_val, y_val),
batch_size=batch_size, epochs=epochs,
callbacks=callbacks
)
# Save the parameters
parameters = {
'loss' : loss, 'optimizer' : optimizer, 'learning rate' : learning_rate,
'epochs' : epochs, 'batch size' : batch_size, 'factor' : factor,
'patience RLR' : patience_RLR, 'patience ES': patience_ES, 'min LR' : min_lr
}
if save_parameters == True:
pd.DataFrame.from_dict(data=parameters, orient='index').to_csv(csv_path_parameter, header=False)
return history