diff --git a/test/optimizationsystem.jl b/test/optimizationsystem.jl index 598f9c3f27..72e3e4906d 100644 --- a/test/optimizationsystem.jl +++ b/test/optimizationsystem.jl @@ -50,7 +50,7 @@ using ModelingToolkit: get_metadata cons_h = true) @test prob.f.sys === combinedsys sol = solve(prob, Ipopt.Optimizer(); print_level = 0) - @test sol.minimum < -1e5 + @test sol.objective < -1e5 end @testset "inequality constraint" begin @@ -66,14 +66,14 @@ end grad = true, hess = true, cons_j = true, cons_h = true) @test prob.f.sys === sys sol = solve(prob, IPNewton()) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 sol = solve(prob, Ipopt.Optimizer(); print_level = 0) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 prob = OptimizationProblem(sys, [x => 0.0, y => 0.0], [a => 1.0, b => 1.0], grad = false, hess = false, cons_j = false, cons_h = false) sol = solve(prob, AmplNLWriter.Optimizer(Ipopt_jll.amplexe)) - @test_skip sol.minimum < 1.0 + @test_skip sol.objective < 1.0 end @testset "equality constraint" begin @@ -88,18 +88,18 @@ end prob = OptimizationProblem(sys, [x => 0.0, y => 0.0, z => 0.0], [a => 1.0, b => 1.0], grad = true, hess = true, cons_j = true, cons_h = true) sol = solve(prob, IPNewton()) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 @test sol.u≈[0.808, -0.064] atol=1e-3 @test sol[x]^2 + sol[y]^2 ≈ 1.0 sol = solve(prob, Ipopt.Optimizer(); print_level = 0) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 @test sol.u≈[0.808, -0.064] atol=1e-3 @test sol[x]^2 + sol[y]^2 ≈ 1.0 prob = OptimizationProblem(sys, [x => 0.0, y => 0.0, z => 0.0], [a => 1.0, b => 1.0], grad = false, hess = false, cons_j = false, cons_h = false) sol = solve(prob, AmplNLWriter.Optimizer(Ipopt_jll.amplexe)) - @test_skip sol.minimum < 1.0 + @test_skip sol.objective < 1.0 @test_skip sol.u≈[0.808, -0.064] atol=1e-3 @test_skip sol[x]^2 + sol[y]^2 ≈ 1.0 end @@ -108,7 +108,7 @@ end rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 x0 = zeros(2) p = [1.0, 100.0] - f = OptimizationFunction(rosenbrock, Optimization.AutoModelingToolkit()) + f = OptimizationFunction(rosenbrock, Optimization.AutoSymbolics()) prob = OptimizationProblem(f, x0, p) sol = solve(prob, Newton()) @test sol.u ≈ [1.0, 1.0] @@ -215,15 +215,15 @@ end Ipopt.Optimizer(); print_level = 0)) #= - @test sol.minimum < -1e5 + @test sol.objective < -1e5 prob = OptimizationProblem(sys2, [x => 0.0, y => 0.0], [a => 1.0, b => 100.0], grad = true, hess = true, cons_j = true, cons_h = true) @test prob.f.sys === sys2 sol = solve(prob, IPNewton()) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 sol = solve(prob, Ipopt.Optimizer(); print_level = 0) - @test sol.minimum < 1.0 + @test sol.objective < 1.0 =# end