-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathprepare_cnn_data.py
74 lines (63 loc) · 3.13 KB
/
prepare_cnn_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import print_function
import numpy as np
import h5py
import os, sys, time, argparse
from hdf5_deeplearn_utils import calc_data_mean, calc_data_std, build_train_test_split, check_and_fix_timestamps, resize_data_into_new_key
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--filename')
parser.add_argument('--rewrite', default=0, type=int)
parser.add_argument('--train_length', default=5*60, type=float)
parser.add_argument('--test_length', default=2*60, type=float)
parser.add_argument('--skip_mean_std', default=0, type=int)
parser.add_argument('--new_height', default=60, type=int)
parser.add_argument('--new_width', default=80, type=int)
args = parser.parse_args()
# Set new resize
new_size = (args.new_height, args.new_width)
dataset = h5py.File(args.filename, 'a')
# print('Checking timestamps...')
# check_and_fix_timestamps(dataset)
print('Calculating train/test split...')
sys.stdout.flush()
build_train_test_split(dataset, train_div=args.train_length, test_div=args.test_length, force=args.rewrite)
if np.any(dataset['aps_frame'][0]):
new_aps_key = '{}_{}x{}'.format('aps_frame', new_size[0], new_size[1])
print('Resizing APS frames to {}...'.format(new_aps_key))
sys.stdout.flush()
start_time = time.time()
resize_data_into_new_key(dataset, 'aps_frame', new_aps_key, new_size)
print('Finished in {}s.'.format(time.time()-start_time))
if not args.skip_mean_std:
print('Calculating APS frame mean...')
sys.stdout.flush()
start_time = time.time()
calc_data_mean(dataset, new_aps_key, force=args.rewrite)
print('Finished in {}s.'.format(time.time()-start_time))
print('Calculating APS frame std...')
sys.stdout.flush()
start_time = time.time()
calc_data_std(dataset, new_aps_key, force=args.rewrite)
print('Finished in {}s.'.format(time.time()-start_time))
if np.any(dataset['dvs_frame'][0]):
new_dvs_key = '{}_{}x{}'.format('dvs_frame', new_size[0], new_size[1])
print('Resizing DVS frames to {}...'.format(new_dvs_key))
sys.stdout.flush()
start_time = time.time()
resize_data_into_new_key(dataset, 'dvs_frame', new_dvs_key, new_size)
print('Finished in {}s.'.format(time.time()-start_time))
if not args.skip_mean_std:
print('Calculating DVS frame mean...')
sys.stdout.flush()
start_time = time.time()
calc_data_mean(dataset, new_dvs_key, force=args.rewrite)
print('Finished in {}s.'.format(time.time()-start_time))
sys.stdout.flush()
print('Calculating DVS frame std...')
sys.stdout.flush()
start_time = time.time()
calc_data_std(dataset, new_dvs_key, force=args.rewrite)
print('Finished in {}s.'.format(time.time()-start_time))
print('Done. Preprocessing complete.')
filesize = os.path.getsize(args.filename)
print('Final size: {:.1f}MiB to {}.'.format(filesize/1024**2, args.filename))