-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
106 lines (81 loc) · 3.52 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings,HuggingFaceInstructEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css,bot_template,user_template
from langchain.llms import HuggingFaceHub
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="/n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
# embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks,embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
# llm = ChatOpenAI()
llm = HuggingFaceHub(repo_id="openai-community/openai-gpt", model_kwargs={"temperature":0.5, "max_length":1024})
memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True)
converstation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return converstation_chain
def handle_user_input(user_input):
response = st.session_state.conversation({'question': user_input})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="kurma",page_icon=":fox:")
st.write(css,unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None #remains the same for the session
st.header("Chat with multiple PDF's")
user_input = st.text_input("Enter your message here")
if user_input:
handle_user_input(user_input)
# st.write(user_template.replace("{{MSG}}","Hello bot"),unsafe_allow_html=True)
# st.write(bot_template.replace("{{MSG}}","Hello human"),unsafe_allow_html=True)
with st.sidebar:
st.subheader("Your Docs")
pdf_docs = st.file_uploader("Upload your PDF",accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing..."):
#get pdf text
raw_text = get_pdf_text(pdf_docs)
#get the text chunks
text_chunks = get_text_chunks(raw_text)
# st.write(text_chunks)
#create vector store
vector_store = get_vector_store(text_chunks)
# st.write(vector_store)
#converstion chain
st.session_state.conversation = get_conversation_chain(vector_store)
if __name__ == "__main__":
main()