-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.yaml
80 lines (73 loc) · 2.46 KB
/
test.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Air Hockey Table Parameters
air_hockey:
simulator_params:
num_paddles: 1 # How would we add multiple paddles, do I need to change # of robots?
num_pucks: 1 # More pucks needed? Need to figure out where puck reset happens
num_blocks: 0 # Who?
num_obstacles: 0 # Who?
num_targets: 0 # Who?
absorb_target: false # Why?
# 57: <geom name="surface" type="box" material="white" size="length width 0.0505" pos="0 0 -0.0505"
length: 1.064
width: 0.609
# 102: <geom pos="0 0 -0.2" name="puck" type="cylinder" material="red" size="puck_radius 0.009" condim="4" priority="0" group="1"/>
puck_radius: 0.03175
# round_gripper.py: ask michael, this is likely an issue
paddle_radius: 0.0508
block_width: 0.0254 # who?
force_scaling: 1000 # what?
paddle_damping: 3 # uh
#97: <joint name="puck_x" type="slide" axis="1 0 0" damping="0.01" limited="false"/>
#98: <joint name="puck_y" type="slide" axis="0 1 0" damping="0.01" limited="false"/>
puck_damping: 0.08
paddle_density: 2500 # HUH
puck_density: 250 # WHAT NOW
render_size: 360 # how customize this
gravity: -0.5 # hmmm not sure where this is configured
max_force_timestep: 100 # max force we can apply at one timestep
render_size: 360 # smh repeated smh
simulator: box2d # or robosuite
max_timesteps: 300
# reward_type: 'goal_position_velocity'
task: 'puck_touch'
goal_max_x_velocity: 1 # min is -goal_max_x_velocity
goal_min_y_velocity: 1
goal_max_y_velocity: 5
terminate_on_out_of_bounds: true
terminate_on_enemy_goal: true
terminate_on_puck_stop: false
truncate_rew: -1
wall_bumping_rew: -1
direction_change_rew: -0.05
horizontal_vel_rew: -0.1
diagonal_motion_rew: -0.1
stand_still_rew: 0.01
# Training Parameters
n_training_steps: 1000000
model_save_filepath: model # will be saved same dir as tb_log_dir
vec_normalize_save_filepath: vec_normalize.pkl
tb_log_dir: baseline_models
tb_log_name: air_hockey_agent
gamma: 0.99
seed: [0, 1, 2, 3, 4]
n_threads: 1
algorithm: ppo
n_eval_eps: 30
eval_freq: 5000
# this parameter is only used when evaluating demonstrations
print_reward: false
# None of the below are integrated, but examples of what could be added to the config file
# num_envs: 16
# num_steps: 2048
# num_epochs: 10
# num_minibatches: 32
# learning_rate: 3e-4
# gamma: 0.99
# gae_lambda: 0.95
# clip_range: 0.2
# vf_coef: 0.5
# ent_coef: 0.01
# max_grad_norm: 0.5
# value_clip: true
# log_interval: 10
# save_interval: 100