-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathtrain.py
283 lines (252 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import os
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from huggingface_hub import PyTorchModelHubMixin
from data_loader import create_training_datasets
from model import ISNetDIS, ISNetGTEncoder, U2NET, U2NET_full2, U2NET_lite2, MODNet \
, InSPyReNet, InSPyReNet_Res2Net50, InSPyReNet_SwinB
# warnings.filterwarnings("ignore")
net_names = ["isnet_is", "isnet", "isnet_gt", "u2net", "u2netl", "modnet", "inspyrnet_res", "inspyrnet_swin"]
def get_net(net_name, img_size):
if net_name == "isnet":
return ISNetDIS()
elif net_name == "isnet_is":
return ISNetDIS()
elif net_name == "isnet_gt":
return ISNetGTEncoder()
elif net_name == "u2net":
return U2NET_full2()
elif net_name == "u2netl":
return U2NET_lite2()
elif net_name == "modnet":
return MODNet()
elif net_name == "inspyrnet_res":
return InSPyReNet_Res2Net50(base_size=img_size)
elif net_name == "inspyrnet_swin":
return InSPyReNet_SwinB(base_size=img_size)
raise NotImplementedError
def f1_torch(pred, gt):
# micro F1-score
pred = pred.float().view(pred.shape[0], -1)
gt = gt.float().view(gt.shape[0], -1)
tp1 = torch.sum(pred * gt, dim=1)
tp_fp1 = torch.sum(pred, dim=1)
tp_fn1 = torch.sum(gt, dim=1)
pred = 1 - pred
gt = 1 - gt
tp2 = torch.sum(pred * gt, dim=1)
tp_fp2 = torch.sum(pred, dim=1)
tp_fn2 = torch.sum(gt, dim=1)
precision = (tp1 + tp2) / (tp_fp1 + tp_fp2 + 0.0001)
recall = (tp1 + tp2) / (tp_fn1 + tp_fn2 + 0.0001)
f1 = (1 + 0.3) * precision * recall / (0.3 * precision + recall + 0.0001)
return precision, recall, f1
class AnimeSegmentation(pl.LightningModule,
PyTorchModelHubMixin,
library_name="anime_segmentation",
repo_url="https://github.com/SkyTNT/anime-segmentation",
tags=["image-segmentation"]
):
def __init__(self, net_name, img_size=None, lr=1e-3):
super().__init__()
assert net_name in net_names
self.img_size = img_size
self.lr = lr
self.net = get_net(net_name, img_size)
if net_name == "isnet_is":
self.gt_encoder = get_net("isnet_gt", img_size)
self.gt_encoder.requires_grad_(False)
else:
self.gt_encoder = None
@classmethod
def try_load(cls, net_name, ckpt_path, map_location=None, img_size=None):
state_dict = torch.load(ckpt_path, map_location=map_location)
if "epoch" in state_dict:
return cls.load_from_checkpoint(ckpt_path, net_name=net_name, img_size=img_size, map_location=map_location)
else:
model = cls(net_name, img_size)
if any([k.startswith("net.") for k, v in state_dict.items()]):
model.load_state_dict(state_dict)
else:
model.net.load_state_dict(state_dict)
return model
def configure_optimizers(self):
optimizer = optim.Adam(self.net.parameters(), lr=self.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
return optimizer
def forward(self, x):
if isinstance(self.net, ISNetDIS):
return self.net(x)[0][0].sigmoid()
if isinstance(self.net, ISNetGTEncoder):
return self.net(x)[0][0].sigmoid()
elif isinstance(self.net, U2NET):
return self.net(x)[0].sigmoid()
elif isinstance(self.net, MODNet):
return self.net(x, True)[2]
elif isinstance(self.net, InSPyReNet):
return self.net.forward_inference(x)["pred"]
raise NotImplementedError
def training_step(self, batch, batch_idx):
images, labels = batch["image"], batch["label"]
if isinstance(self.net, ISNetDIS):
ds, dfs = self.net(images)
loss_args = [ds, dfs, labels]
if self.gt_encoder is not None:
fs = self.gt_encoder(labels)[1]
loss_args.append(fs)
elif isinstance(self.net, ISNetGTEncoder):
ds = self.net(labels)[0]
loss_args = [ds, labels]
elif isinstance(self.net, U2NET):
ds = self.net(images)
loss_args = [ds, labels]
elif isinstance(self.net, MODNet):
trimaps = batch["trimap"]
pred_semantic, pred_detail, pred_matte = self.net(images, False)
loss_args = [pred_semantic, pred_detail, pred_matte, images, trimaps, labels]
elif isinstance(self.net, InSPyReNet):
out = self.net.forward_train(images, labels)
loss_args = out
else:
raise NotImplementedError
loss0, loss = self.net.compute_loss(loss_args)
self.log_dict({"train/loss": loss, "train/loss_tar": loss0})
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch["image"], batch["label"]
if isinstance(self.net, ISNetGTEncoder):
preds = self.forward(labels)
else:
preds = self.forward(images)
pre, rec, f1, = f1_torch(preds.nan_to_num(nan=0, posinf=1, neginf=0), labels)
mae_m = F.l1_loss(preds, labels, reduction="mean")
pre_m = pre.mean()
rec_m = rec.mean()
f1_m = f1.mean()
self.log_dict({"val/precision": pre_m, "val/recall": rec_m, "val/f1": f1_m, "val/mae": mae_m}, sync_dist=True)
def get_gt_encoder(train_dataloader, val_dataloader, opt):
print("---start train ground truth encoder---")
gt_encoder = AnimeSegmentation("isnet_gt")
trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
devices=opt.devices, max_epochs=opt.gt_epoch,
benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
)
trainer.fit(gt_encoder, train_dataloader, val_dataloader)
return gt_encoder.net
def main(opt):
if not os.path.exists("lightning_logs"):
os.mkdir("lightning_logs")
train_dataset, val_dataset = create_training_datasets(opt.data_dir, opt.fg_dir, opt.bg_dir, opt.img_dir,
opt.mask_dir, opt.fg_ext, opt.bg_ext, opt.img_ext,
opt.mask_ext, opt.data_split, opt.img_size,
with_trimap=opt.net == "modnet",
cache_ratio=opt.cache, cache_update_epoch=opt.cache_epoch)
train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size_train, shuffle=True, persistent_workers=True,
num_workers=opt.workers_train, pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=opt.batch_size_val, shuffle=False, persistent_workers=True,
num_workers=opt.workers_val, pin_memory=True)
print("---define model---")
if opt.pretrained_ckpt == "":
anime_seg = AnimeSegmentation(opt.net, opt.img_size)
else:
anime_seg = AnimeSegmentation.try_load(opt.net, opt.pretrained_ckpt, "cpu", opt.img_size)
if not opt.pretrained_ckpt and not opt.resume_ckpt and opt.net == "isnet_is":
anime_seg.gt_encoder.load_state_dict(get_gt_encoder(train_dataloader, val_dataloader, opt).state_dict())
anime_seg.lr = opt.lr
print("---start train---")
checkpoint_callback = ModelCheckpoint(monitor='val/f1', mode="max", save_top_k=1, save_last=True,
auto_insert_metric_name=False, filename="epoch={epoch},f1={val/f1:.4f}")
trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
devices=opt.devices, max_epochs=opt.epoch,
benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
callbacks=[checkpoint_callback])
trainer.fit(anime_seg, train_dataloader, val_dataloader, ckpt_path=opt.resume_ckpt or None)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument('--net', type=str, default='isnet_is',
choices=net_names,
help='isnet_is: Train ISNet with intermediate feature supervision, '
'isnet: Train ISNet, '
'u2net: Train U2Net full, '
'u2netl: Train U2Net lite, '
'modnet: Train MODNet'
'inspyrnet_res: Train InSPyReNet_Res2Net50'
'inspyrnet_swin: Train InSPyReNet_SwinB')
parser.add_argument('--pretrained-ckpt', type=str, default='',
help='load form pretrained ckpt')
parser.add_argument('--resume-ckpt', type=str, default='',
help='resume training from ckpt')
parser.add_argument('--img-size', type=int, default=1024,
help='image size for training and validation,'
'1024 recommend for ISNet,'
'384 recommend for InSPyReNet'
'640 recommend for others,')
# dataset args
parser.add_argument('--data-dir', type=str, default='../../dataset/anime-seg',
help='root dir of dataset')
parser.add_argument('--fg-dir', type=str, default='fg',
help='relative dir of foreground')
parser.add_argument('--bg-dir', type=str, default='bg',
help='relative dir of background')
parser.add_argument('--img-dir', type=str, default='imgs',
help='relative dir of images')
parser.add_argument('--mask-dir', type=str, default='masks',
help='relative dir of masks')
parser.add_argument('--fg-ext', type=str, default='.png',
help='extension name of foreground')
parser.add_argument('--bg-ext', type=str, default='.jpg',
help='extension name of background')
parser.add_argument('--img-ext', type=str, default='.jpg',
help='extension name of images')
parser.add_argument('--mask-ext', type=str, default='.jpg',
help='extension name of masks')
parser.add_argument('--data-split', type=float, default=0.95,
help='split rate for training and validation')
# training args
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate')
parser.add_argument('--epoch', type=int, default=40,
help='epoch num')
parser.add_argument('--gt-epoch', type=int, default=4,
help='epoch for training ground truth encoder when net is isnet_is')
parser.add_argument('--batch-size-train', type=int, default=2,
help='batch size for training')
parser.add_argument('--batch-size-val', type=int, default=2,
help='batch size for val')
parser.add_argument('--workers-train', type=int, default=4,
help='workers num for training dataloader')
parser.add_argument('--workers-val', type=int, default=4,
help='workers num for validation dataloader')
parser.add_argument('--acc-step', type=int, default=4,
help='gradient accumulation step')
parser.add_argument('--accelerator', type=str, default="gpu",
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
help='accelerator')
parser.add_argument('--devices', type=int, default=1,
help='devices num')
parser.add_argument('--fp32', action='store_true', default=False,
help='disable mix precision')
parser.add_argument('--benchmark', action='store_true', default=False,
help='enable cudnn benchmark')
parser.add_argument('--log-step', type=int, default=2,
help='log training loss every n steps')
parser.add_argument('--val-epoch', type=int, default=1,
help='valid and save every n epoch')
parser.add_argument('--cache-epoch', type=int, default=3,
help='update cache every n epoch')
parser.add_argument('--cache', type=float, default=0,
help='ratio (cache to entire training dataset), '
'higher values require more memory, set 0 to disable cache')
opt = parser.parse_args()
print(opt)
main(opt)