-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid_pull.R
200 lines (173 loc) · 7.82 KB
/
covid_pull.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
library(tidyverse)
reports <- list.files("csse_covid_19_data\\csse_covid_19_daily_reports",
pattern = ".csv")
varnames <- c()
### Variable names change with 3/23 daily report
for(report in reports){
varname <- substr(report, 0, nchar(report) - 4)
varname <- paste0("daily_", varname)
varname <- str_replace_all(varname, "-", "_")
varnames <- rbind(varnames, varname)
report_run <- paste0("csse_covid_19_data\\csse_covid_19_daily_reports\\", report)
exp <- paste0(varname, " <- read_csv(report_run)")
eval(parse(text = exp))
exp_2b <- paste0(varname, " <- ", varname,
" %>% purrr::set_names(~str_replace_all(., '/', '_'))")
eval(parse(text = exp_2b))
exp_2 <- paste0(varname, " <- dplyr::filter(", varname, ",`Country_Region` == 'US')")
eval(parse(text = exp_2))
# Example: daily_03_22_2020 <- daily_03_22_2020 %>%
# purrr::set_names(~str_replace_all(., "/", "_"))
print(report)
}
### Accounts for format change from 3/23 daily report forward
state_abbs <- data.frame(name = state.name, state = state.abb)
state_abbs$name <- as.character(state_abbs$name)
state_abbs$state <- as.character(state_abbs$state)
state_abbs <- rbind(state_abbs, c("District of Columbia", "DC"),
c("Diamond Princess", "Cruise"),
c("Grand Princess", "Cruise"),
c("Puerto Rico", "PR"),
c("Guam", "GU"),
c("Virgin Islands", "VI"),
c("Chicago", "IL"))
for(i in seq(1, 10, by = 1)){
exp_3 <- paste0(varnames[i], " <- left_join(", varnames[i],
" , state_abbs, by = c('Province_State' = 'name'))")
eval(parse(text = exp_3))
exp_8 <- paste0(varnames[i], "$date <- substr('", as.character(varnames[i]),
"', 7, 16)")
eval(parse(text = exp_8))
}
for(i in seq(11, 48, by = 1)){
var_prov <- paste0(varnames[i], "$`Province_State`")
exp_4 <- paste0(var_prov, " <- ifelse(", var_prov,
" == 'Washington, D.C.', 'Washington, DC', ", var_prov, ")")
eval(parse(text = exp_4))
exp_5 <- paste0(varnames[i], "$state <- substr(str_extract(",
var_prov, ", regex('[,][:space:][:UPPER:]{2}')), 3, 4)")
eval(parse(text = exp_5))
# Example: daily_03_09_2020$state <- replace_na(daily_03_09_2020$state, "Cruise")
exp_6 <- paste0(varnames[i], "$state <- replace_na(", varnames[i],
"$state, 'Cruise')")
eval(parse(text = exp_6))
# Example: daily_03_09_2020 <- dplyr::group_by(daily_03_09_2020, state) %>%
# summarize(Confirmed = sum(Confirmed), Deaths = sum(Deaths),
# Recovered = sum(Recovered))
exp_7 <- paste0(varnames[i], " <- dplyr::group_by(", varnames[i],
", state) %>% summarize(Confirmed = sum(Confirmed),
Deaths = sum(Deaths), Recovered = sum(Recovered))")
eval(parse(text = exp_7))
# Example: daily_03_09_2020$date <- substr("daily_03_09_2020", 7, 16)
exp_8 <- paste0(varnames[i], "$date <- substr('", as.character(varnames[i]),
"', 7, 16)")
eval(parse(text = exp_8))
}
for(i in seq(49, 61, by = 1)){
#Standardize US Virgin Islands annotations
var_prov <- paste0(varnames[i], "$`Province_State`")
exp_4b <- paste0(var_prov, " <- ifelse(", var_prov,
" == 'Virgin Islands, U.S.', 'Virgin Islands', ", var_prov, ")")
eval(parse(text = exp_4b))
exp_3 <- paste0(varnames[i], " <- left_join(", varnames[i],
" , state_abbs, by = c('Province_State' = 'name'))")
eval(parse(text = exp_3))
exp_8 <- paste0(varnames[i], "$date <- substr('", as.character(varnames[i]),
"', 7, 16)")
eval(parse(text = exp_8))
}
var_counties <- c()
for(i in seq(62, length(varnames), by = 1)){
#Standardize US Virgin Islands annotations
var_prov <- paste0(varnames[i], "$`Province_State`")
exp_4b <- paste0(var_prov, " <- ifelse(", var_prov,
" == 'Virgin Islands, U.S.', 'Virgin Islands', ", var_prov, ")")
eval(parse(text = exp_4b))
# Copying county numbers to separate data frames for later export
var_county <- paste0(varnames[i], "_county")
exp_4c <- paste0(var_county, " <- ", varnames[i])
eval(parse(text = exp_4c))
var_counties <- rbind(var_counties, var_county)
exp_3 <- paste0(varnames[i], " <- left_join(", varnames[i],
" , state_abbs, by = c('Province_State' = 'name'))")
eval(parse(text = exp_3))
exp_8 <- paste0(varnames[i], "$date <- substr('", as.character(varnames[i]),
"', 7, 16)")
eval(parse(text = exp_8))
}
for(i in seq(1, nrow(varnames), by = 1)){
#Example: dplyr::select(daily_01_24_2020, Confirmed, Deaths, Recovered, state, date)
exp_9 <- paste0(varnames[i], " <- dplyr::select(", varnames[i],
", Confirmed, Deaths, Recovered, state, date)")
eval(parse(text = exp_9))
#Example: daily_01_22_2020 <- daily_01_22_2020 %>%
# complete(state = state_abbs$state,
# fill = list(Confirmed = 0, Deaths = 0, Recovered = 0))
exp_10 <- paste0(varnames[i], " <- ", varnames[i], " %>% complete(
state = state_abbs$state, fill = list(Confirmed = 0,
Deaths = 0, Recovered = 0, date = substr('", as.character(varnames[i]),
"', 7, 16)))")
eval(parse(text = exp_10))
}
# Create state time-series
for(i in seq(1, nrow(varnames), 1)){
if(exists("covid_us_ts")){
#Example: covid_us_ts <- rbind(covid_us_ts, daily_01_23_2020)
exp_11 <- paste0("covid_us_ts <- rbind(covid_us_ts, ",
varnames[i], ")")
eval(parse(text = exp_11))
}
else{
exp_12 <- paste0("covid_us_ts <- ", varnames[i])
eval(parse(text = exp_12))
}
}
### Counties
for(i in seq(1, nrow(var_counties), 1)){
if(exists("covid_us_ts_counties")){
#Example: covid_us_ts_counties <- rbind(covid_us_ts_counties, daily_01_23_2020_county)
exp_11 <- paste0("covid_us_ts_counties <- rbind(covid_us_ts_counties, ", var_counties[i], ")")
eval(parse(text = exp_11))
}else{
exp_12 <- paste0("covid_us_ts_counties <- ", var_counties[i])
eval(parse(text = exp_12))
}
}
covid_us_ts_counties <- covid_us_ts_counties %>%
dplyr::filter(!is.na(FIPS))
covid_us_ts$date <- str_replace_all(covid_us_ts$date, "_", "/")
covid_us_ts<- covid_us_ts %>% group_by(state, date) %>%
summarize(Confirmed = sum(Confirmed), Deaths = sum(Deaths),
Recovered = sum(Recovered))
covid_us <- covid_us_ts %>% group_by(date) %>%
summarize( Confirmed = sum(Confirmed), Deaths = sum(Deaths),
Recovered = sum(Recovered)) %>%
mutate(Active = Confirmed - Deaths - Recovered,
New = Confirmed - lag(Confirmed)) %>%
replace_na(list(New = 1))
covid_us_ts <- covid_us_ts %>%
group_by(state) %>%
mutate_at(c("Confirmed", "Deaths", "Recovered"),
~if_else(. < lag(., default = first(.)), lag(.), .)) %>%
ungroup() %>%
mutate(Active = Confirmed - Deaths - Recovered,
New = Confirmed - lag(Confirmed)) %>%
replace_na(list(Active = 0, New = 0)) %>%
dplyr::filter(!is.na(state)) %>% select(-Recovered)
covid_us$New <- ifelse(covid_us$New < 0, 0, covid_us$New)
covid_us$Recovered <- ifelse(covid_us$Recovered < lag(covid_us$Recovered),
lag(covid_us$Recovered), covid_us$Recovered)
covid_us <- covid_us %>% replace_na(list(Recovered = 0))
### Fix lags
covid_us_ts$New <- ifelse(covid_us_ts$New < 0, 0, covid_us_ts$New)
lag_n_avg <-function(variable, days){
count <- 0
for(i in 0:(days - 1)) count <- count + lag(variable, n = i, default = first(variable))
return(count/days)
}
covid_us_ts <- covid_us_ts %>% group_by(state) %>%
mutate(New_3_avg = lag_n_avg(New, 3),
New_7_avg = lag_n_avg(New, 7))
write_csv(covid_us_ts_counties, "covid_us_time_series_counties.csv")
write_csv(covid_us_ts, "covid_us_time_series.csv")
write_csv(covid_us, "covid_us_time_series_aggregate.csv")