From 4315a08065f07a58112010206e055711fd879eec Mon Sep 17 00:00:00 2001 From: Stalin <161853795+Stalin-143@users.noreply.github.com> Date: Thu, 26 Dec 2024 18:42:32 +0530 Subject: [PATCH] Create Cancer-Identifying-AI.py --- Cancer-Identifying-AI.py | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 Cancer-Identifying-AI.py diff --git a/Cancer-Identifying-AI.py b/Cancer-Identifying-AI.py new file mode 100644 index 0000000..e31bf79 --- /dev/null +++ b/Cancer-Identifying-AI.py @@ -0,0 +1,40 @@ +import numpy as np +from sklearn.datasets import load_breast_cancer +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import StandardScaler +from sklearn.metrics import accuracy_score +import tensorflow as tf + +# Load the Breast Cancer dataset +data = load_breast_cancer() +X = data.data +y = data.target + +# Split the data into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Standardize the features +scaler = StandardScaler() +X_train = scaler.fit_transform(X_train) +X_test = scaler.transform(X_test) + +# Build the neural network model +model = tf.keras.Sequential([ + tf.keras.layers.Dense(30, activation='relu', input_shape=(X_train.shape[1],)), + tf.keras.layers.Dense(15, activation='relu'), + tf.keras.layers.Dense(1, activation='sigmoid') # Binary classification +]) + +# Compile the model +model.compile(optimizer='adam', + loss='binary_crossentropy', + metrics=['accuracy']) + +# Train the model +model.fit(X_train, y_train, epochs=50, batch_size=16, verbose=1) + +# Evaluate the model +y_pred = (model.predict(X_test) > 0.5).astype(int).flatten() +accuracy = accuracy_score(y_test, y_pred) + +print(f"Model Accuracy: {accuracy * 100:.2f}%")