From eed342936f78b9137f0e34c8089622c4926ddeee Mon Sep 17 00:00:00 2001 From: Stalin <161853795+Stalin-143@users.noreply.github.com> Date: Tue, 10 Dec 2024 13:51:49 +0530 Subject: [PATCH] Create manual.sh --- Health Monitoring/manual.sh | 72 +++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 Health Monitoring/manual.sh diff --git a/Health Monitoring/manual.sh b/Health Monitoring/manual.sh new file mode 100644 index 0000000..4bf8bcc --- /dev/null +++ b/Health Monitoring/manual.sh @@ -0,0 +1,72 @@ +#!/bin/bash + +# Health Monitoring System Manual + +echo "==============================================" +echo " Health Monitoring System - User Manual" +echo "==============================================" +echo "" +echo "This script describes the functionality and usage of the Health Monitoring System implemented in Python." +echo "" +echo "--------------------------" +echo "System Overview:" +echo "--------------------------" +echo "The Health Monitoring System is a Python-based application designed to simulate, analyze, and monitor health metrics." +echo "Key Features include:" +echo " 1. Synthetic Data Generation for heart rate, step count, and activity." +echo " 2. Anomaly Detection using DBSCAN clustering." +echo " 3. Activity Classification using a Random Forest model." +echo " 4. Real-Time Data Simulation." +echo " 5. Visualization of health trends and detected anomalies." +echo "" +echo "--------------------------" +echo "System Steps & Functionality:" +echo "--------------------------" +echo "1. Generate Data:" +echo " - Simulates health data for heart rate, step count, and activity over time." +echo " - Adds timestamps to each data point." +echo "" +echo "2. Preprocess Data:" +echo " - Normalizes the features (heart rate and step count) using StandardScaler for better model performance." +echo "" +echo "3. Train Activity Classification Model:" +echo " - Splits the data into training and test sets." +echo " - Uses Random Forest Classifier with cross-validation for training." +echo " - Evaluates the model with metrics such as accuracy, precision, recall, and F1-score." +echo "" +echo "4. Detect Anomalies:" +echo " - Applies DBSCAN clustering to detect outliers in the health data." +echo " - Marks outliers as anomalies and visualizes them in a time-series plot." +echo "" +echo "5. Simulate Real-Time Data:" +echo " - Samples random data points from the dataset to simulate real-time health monitoring." +echo " - Displays heart rate, step count, activity type, and anomaly status in real-time." +echo "" +echo "6. Visualize Health Metrics:" +echo " - Plots time-series data for heart rate and step count." +echo " - Highlights anomalies for easy identification of irregularities." +echo "" +echo "--------------------------" +echo "Instructions to Run:" +echo "--------------------------" +echo "1. Ensure Python 3.x and the required libraries (numpy, pandas, matplotlib, sklearn) are installed." +echo " To install the libraries, run:" +echo " pip install numpy pandas matplotlib scikit-learn" +echo "" +echo "2. Copy the Python code into a file (e.g., health_monitor.py)." +echo "" +echo "3. Run the Python script:" +echo " python health_monitor.py" +echo "" +echo "4. Follow the output to observe model training results, anomaly detection, and real-time data simulation." +echo "" +echo "--------------------------" +echo "Additional Notes:" +echo "--------------------------" +echo "- Modify the 'data_size' parameter in the Python code to adjust the size of the simulated dataset." +echo "- Customize the thresholds in the DBSCAN algorithm for different sensitivity levels." +echo "- Extend the system to integrate real-world data sources or send alerts for anomalies." +echo "" +echo "==============================================" +echo " End of Manual" +echo "=============================================="