-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
246 lines (195 loc) · 8.71 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
'''A Flask application to run the YOLOv7 PPE violation model on a video file or ip cam stream
Authors: Anubhav Patrick and Hamza Aziz
Date: 07/02/2023
'''
import os.path
import validators
from flask import Flask, render_template, request, Response
from hubconfCustom import video_detection
import hubconfCustom
import cv2
# Initialize the Flask application
app = Flask(__name__, static_folder = 'static')
app.config["VIDEO_UPLOADS"] = "static/video"
app.config["ALLOWED_VIDEO_EXTENSIONS"] = ["MP4", "MOV", "AVI", "WMV"]
#secret key for the session
app.config['SECRET_KEY'] = 'ppe_violation_detection'
#global variables
frames_buffer = [] #buffer to store frames from a stream
vid_path = app.config["VIDEO_UPLOADS"]+'/vid.mp4' #path to uploaded/stored video file
video_frames = cv2.VideoCapture(vid_path) #video capture object
def allowed_video(filename: str):
'''A function to check if the uploaded file is a video
Args:
filename (str): name of the uploaded file
Returns:
bool: True if the file is a video, False otherwise
'''
if "." not in filename:
return False
extension = filename.rsplit(".", 1)[1]
if extension.upper() in app.config["ALLOWED_VIDEO_EXTENSIONS"]:
return True
else:
return False
def generate_raw_frames():
'''A function to yield unprocessed frames from stored video file or ip cam stream
Args:
None
Yields:
bytes: a frame from the video file or ip cam stream
'''
global video_frames
while True:
# Keep reading the frames from the video file or ip cam stream
success, frame = video_frames.read()
if success:
# create a copy of the frame to store in the buffer
frame_copy = frame.copy()
#store the frame in the buffer for violation detection
frames_buffer.append(frame_copy)
#compress the frame and store it in the memory buffer
_, buffer = cv2.imencode('.jpg', frame)
#convert the buffer to bytes
frame = buffer.tobytes()
#yield the frame to the browser
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame +b'\r\n')
def generate_processed_frames(conf_= 0.25):
'''A function to yield processed frames from stored video file or ip cam stream after violation detection
Args:
conf_ (float, optional): confidence threshold for the detection. Defaults to 0.25.
Yields:
bytes: a processed frame from the video file or ip cam stream
'''
#call the video_detection for violation detection which yields a list of processed frames
yolo_output = video_detection(conf_, frames_buffer)
#iterate through the list of processed frames
for detection_, _ in yolo_output:
#The function imencode compresses the image and stores it in the memory buffer
_,buffer=cv2.imencode('.jpg',detection_)
#convert the buffer to bytes
frame=buffer.tobytes()
#yield the processed frame to the browser
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame +b'\r\n')
@app.route('/video_raw')
def video_raw():
'''A function to handle the requests for the raw video stream
Args:
None
Returns:
Response: a response object containing the raw video stream
'''
return Response(generate_raw_frames(),mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/video_processed')
def video_processed():
'''A function to handle the requests for the processed video stream after violation detection
Args:
None
Returns:
Response: a response object containing the processed video stream
'''
#default confidence threshold
conf = 0.75
return Response(generate_processed_frames(conf_=conf),mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/', methods=["GET", "POST"])
def index():
'''A function to handle the requests from the web page
Args:
None
Returns:
render_template: the index.html page (home page)
'''
return render_template('index.html')
@app.route('/submit', methods=['POST'])
def submit_form():
'''A function to handle the requests from the HTML form on the web page
Args:
None
Returns:
str: a string containing the response message
'''
# global variables
global vid_path, video_frames, frames_buffer
#if the request is a POST request made by user interaction with the HTML form
if request.method == "POST":
#print(request.form)vid_ip_path.startswith('http://')
# handle video upload request
if request.files:
video = request.files['video']
#check if video file is uploaded or not
if video.filename == '':
# display a flash alert message on the web page
return "That video must have a file name"
#check if the uploaded file is a video
elif not allowed_video(video.filename):
# display a flash alert message on the web page
return "Unsupported video. The video file must be in MP4, MOV, AVI or WMV format."
else:
# default video name
filename = 'vid.mp4'
# ensure video size is less than 200MB
if video.content_length > 200*1024*1024:
return "Error! That video is too large"
else:
try:
video.save(os.path.join(app.config["VIDEO_UPLOADS"], filename))
return "That video is successfully uploaded"
except Exception as e:
#print(e)
return "Error! The video could not be saved"
# handle download request for the detections summary report
if 'download_button' in request.form:
print('Download Button Clicked')
with open('static/reports/detections_summary.txt', 'w') as f:
f.write(hubconfCustom.detections_summary)
return Response(open('static/reports/detections_summary.txt', 'rb').read(),
mimetype='text/plain',
headers={"Content-Disposition":"attachment;filename=detections_summary.txt"})
# handle alert email request
elif 'alert_email_checkbox' in request.form:
email_checkbox_value = request.form['alert_email_checkbox']
if email_checkbox_value == 'false':
hubconfCustom.is_email_allowed = False
return "Alert email is disabled"
else:
# set flag that sending email alert is allowed
hubconfCustom.is_email_allowed = True
# set flag that next email can be sent when a violation is detected
hubconfCustom.send_next_email = True
hubconfCustom.email_recipient = request.form['alert_email_textbox']
return f"Alert email is enabled at {hubconfCustom.email_recipient}. Violation alert(s) with a gap of 10 minutes will be sent"
# handle inference request for a video file
elif 'inference_video_button' in request.form:
vid_path = os.path.join(app.config["VIDEO_UPLOADS"], 'vid.mp4')
video_frames = cv2.VideoCapture(vid_path)
frames_buffer.clear()
# check if the video is opened
if not video_frames.isOpened():
return 'Error in opening video',500
else:
frames_buffer.clear()
return 'success'
# handle inference request for a live stream via IP camera
elif 'live_inference_button' in request.form:
#read ip cam url from the text box
vid_ip_path = request.form['live_inference_textbox']
#check if vid_ip_path is a valid url
if validators.url(vid_ip_path):
vid_path = vid_ip_path.strip()
video_frames = cv2.VideoCapture(vid_path)
#check connection to the ip cam stream
if not video_frames.isOpened():
# display a flash alert message on the web page
return 'Error: Cannot connect to live stream',500
else:
frames_buffer.clear()
return 'success'
else:
# the url is not valid
return 'Error: Entered URL is invalid',500
if __name__ == "__main__":
#copy file from static/files/vid.mp4 to static/video/vid.mp4
os.system('cp static/files/vid.mp4 static/video/vid.mp4')
app.run(debug=True)