Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FileNotFoundError("No such file: '%s'" % fn) #41

Open
Mstfakts opened this issue May 3, 2020 · 5 comments
Open

FileNotFoundError("No such file: '%s'" % fn) #41

Mstfakts opened this issue May 3, 2020 · 5 comments

Comments

@Mstfakts
Copy link

Mstfakts commented May 3, 2020

Hello all,

I try to train Mask-RCNN via COCO-2017 key-point dataset. However, I got an error that I could not understand/overcome it. I work on Colab, so I uploaded coco2017 dataset to google drive, and every time I mount it to the colab. Anyway, This is dataset directory:
"/content/drive/My Drive/cocodataset/"
There r 2 files in cocodataset: annotations, train2017, val2017 (I have not uploaded test yet.)

Here is an error message:

Train heads

Starting at epoch 0. LR=0.002

Checkpoint Path: /content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/logs/coco20200503T1902/mask_rcnn_coco_{epoch:04d}.h5
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_keypoint_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn2 (TimeDistributed)
mrcnn_keypoint_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn3 (TimeDistributed)
mrcnn_keypoint_mask_conv4 (TimeDistributed)
mrcnn_keypoint_mask_bn4 (TimeDistributed)
mrcnn_keypoint_mask_conv5 (TimeDistributed)
mrcnn_keypoint_mask_bn5 (TimeDistributed)
mrcnn_keypoint_mask_conv6 (TimeDistributed)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_keypoint_mask_bn6 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv7 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_keypoint_mask_bn7 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_keypoint_mask_conv8 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_keypoint_mask_bn8 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_keypoint_mask_deconv (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:200: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/callbacks/tensorboard_v1.py:203: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.

/usr/local/lib/python3.6/dist-packages/keras/engine/training_generator.py:49: UserWarning: Using a generator with use_multiprocessing=True and multiple workers may duplicate your data. Please consider using the keras.utils.Sequence class. UserWarning('Using a generator with use_multiprocessing=True`'
Epoch 1/15
/usr/local/lib/python3.6/dist-packages/keras/utils/data_utils.py:718: UserWarning: An input could not be retrieved. It could be because a worker has died.We do not have any information on the lost sample.
UserWarning)
ERROR:root:Error processing image {'id': 267417, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000267417.jpg', 'width': 640, 'height': 360, 'annotations': [{'segmentation': [[273.63, 163.05, 280.09, 129.15, 304.3, 117.04, 322.87, 134.8, 343.05, 155.78, 358.39, 213.09, 393.9, 221.97, 387.44, 250.22, 374.53, 232.47, 343.86, 240.54, 330.13, 255.07, 309.96, 259.91, 240.54, 253.45, 238.92, 234.89, 274.44, 223.59]], 'num_keypoints': 16, 'area': 10970.8016, 'iscrowd': 0, 'keypoints': [289, 164, 2, 297, 159, 2, 284, 157, 2, 314, 155, 2, 0, 0, 0, 326, 166, 2, 281, 175, 2, 350, 210, 2, 279, 216, 2, 315, 226, 2, 284, 229, 2, 330, 227, 2, 295, 229, 2, 383, 230, 2, 248, 240, 2, 314, 250, 2, 316, 255, 2], 'image_id': 267417, 'bbox': [238.92, 117.04, 154.98, 142.87], 'category_id': 1, 'id': 481757}, {'segmentation': [[366.51, 124.45, 370.47, 124.68, 372.33, 127.25, 373.26, 133.76, 373.26, 137.02, 373.26, 140.52, 372.57, 148.2, 368.14, 150.76, 363.25, 151.69, 360.92, 151, 359.06, 149.37, 358.59, 149.37, 357.66, 151.46, 351.84, 160.54, 347.42, 165.2, 345.79, 162.4, 346.02, 155.19, 349.05, 150.06, 352.31, 142.85, 353.24, 140.05, 356.73, 139.35, 359.76, 139.35, 361.39, 139.12, 364.42, 134.23, 364.65, 133.53, 363.02, 130.27, 364.18, 126.08]], 'num_keypoints': 0, 'area': 474.04425, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [345.79, 124.45, 27.47, 40.75], 'category_id': 1, 'id': 492854}, {'segmentation': [[199.17, 268.36, 174.86, 260.88, 158.96, 253.4, 146.81, 257.14, 135.58, 257.14, 140.26, 246.86, 133.71, 221.61, 163.64, 174.86, 165.51, 155.22, 167.38, 144, 184.21, 132.78, 206.65, 137.45, 212.26, 157.09, 213.19, 172.05, 216.94, 177.66, 234.7, 189.82, 239.38, 196.36, 228.16, 216.94, 234.7, 233.77, 225.35, 237.51, 227.22, 251.53, 227.22, 256.21, 220.68, 260.88, 215.06, 270.23, 198.23, 270.23]], 'num_keypoints': 17, 'area': 9249.96205, 'iscrowd': 0, 'keypoints': [188, 177, 2, 195, 172, 2, 182, 170, 2, 206, 169, 2, 170, 167, 2, 202, 184, 2, 162, 188, 2, 232, 197, 2, 144, 220, 2, 222, 211, 2, 145, 245, 2, 198, 238, 2, 174, 243, 2, 218, 209, 2, 211, 261, 2, 217, 251, 2, 172, 258, 2], 'image_id': 267417, 'bbox': [133.71, 132.78, 105.67, 137.45], 'category_id': 1, 'id': 2154683}, {'segmentation': [[334.74, 146.64, 334.74, 144.83, 335.42, 141.89, 335.87, 140.08, 336.55, 136.01, 337.91, 134.88, 339.72, 133.52, 342.43, 131.94, 342.43, 128.99, 344.02, 125.38, 345.83, 123.34, 347.86, 123.57, 350.35, 126.05, 351.03, 127.64, 347.86, 132.16, 351.93, 134.65, 352.16, 140.3, 352.16, 142.79, 349.9, 148.22, 347.64, 150.48, 346.05, 153.42, 345.6, 156.59, 341.3, 155.23, 338.36, 150.03]], 'num_keypoints': 0, 'area': 354.4833, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [334.74, 123.34, 17.42, 33.25], 'category_id': 1, 'id': 2161890}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000267417.jpg'
ERROR:root:Error processing image {'id': 267417, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000267417.jpg', 'width': 640, 'height': 360, 'annotations': [{'segmentation': [[273.63, 163.05, 280.09, 129.15, 304.3, 117.04, 322.87, 134.8, 343.05, 155.78, 358.39, 213.09, 393.9, 221.97, 387.44, 250.22, 374.53, 232.47, 343.86, 240.54, 330.13, 255.07, 309.96, 259.91, 240.54, 253.45, 238.92, 234.89, 274.44, 223.59]], 'num_keypoints': 16, 'area': 10970.8016, 'iscrowd': 0, 'keypoints': [289, 164, 2, 297, 159, 2, 284, 157, 2, 314, 155, 2, 0, 0, 0, 326, 166, 2, 281, 175, 2, 350, 210, 2, 279, 216, 2, 315, 226, 2, 284, 229, 2, 330, 227, 2, 295, 229, 2, 383, 230, 2, 248, 240, 2, 314, 250, 2, 316, 255, 2], 'image_id': 267417, 'bbox': [238.92, 117.04, 154.98, 142.87], 'category_id': 1, 'id': 481757}, {'segmentation': [[366.51, 124.45, 370.47, 124.68, 372.33, 127.25, 373.26, 133.76, 373.26, 137.02, 373.26, 140.52, 372.57, 148.2, 368.14, 150.76, 363.25, 151.69, 360.92, 151, 359.06, 149.37, 358.59, 149.37, 357.66, 151.46, 351.84, 160.54, 347.42, 165.2, 345.79, 162.4, 346.02, 155.19, 349.05, 150.06, 352.31, 142.85, 353.24, 140.05, 356.73, 139.35, 359.76, 139.35, 361.39, 139.12, 364.42, 134.23, 364.65, 133.53, 363.02, 130.27, 364.18, 126.08]], 'num_keypoints': 0, 'area': 474.04425, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [345.79, 124.45, 27.47, 40.75], 'category_id': 1, 'id': 492854}, {'segmentation': [[199.17, 268.36, 174.86, 260.88, 158.96, 253.4, 146.81, 257.14, 135.58, 257.14, 140.26, 246.86, 133.71, 221.61, 163.64, 174.86, 165.51, 155.22, 167.38, 144, 184.21, 132.78, 206.65, 137.45, 212.26, 157.09, 213.19, 172.05, 216.94, 177.66, 234.7, 189.82, 239.38, 196.36, 228.16, 216.94, 234.7, 233.77, 225.35, 237.51, 227.22, 251.53, 227.22, 256.21, 220.68, 260.88, 215.06, 270.23, 198.23, 270.23]], 'num_keypoints': 17, 'area': 9249.96205, 'iscrowd': 0, 'keypoints': [188, 177, 2, 195, 172, 2, 182, 170, 2, 206, 169, 2, 170, 167, 2, 202, 184, 2, 162, 188, 2, 232, 197, 2, 144, 220, 2, 222, 211, 2, 145, 245, 2, 198, 238, 2, 174, 243, 2, 218, 209, 2, 211, 261, 2, 217, 251, 2, 172, 258, 2], 'image_id': 267417, 'bbox': [133.71, 132.78, 105.67, 137.45], 'category_id': 1, 'id': 2154683}, {'segmentation': [[334.74, 146.64, 334.74, 144.83, 335.42, 141.89, 335.87, 140.08, 336.55, 136.01, 337.91, 134.88, 339.72, 133.52, 342.43, 131.94, 342.43, 128.99, 344.02, 125.38, 345.83, 123.34, 347.86, 123.57, 350.35, 126.05, 351.03, 127.64, 347.86, 132.16, 351.93, 134.65, 352.16, 140.3, 352.16, 142.79, 349.9, 148.22, 347.64, 150.48, 346.05, 153.42, 345.6, 156.59, 341.3, 155.23, 338.36, 150.03]], 'num_keypoints': 0, 'area': 354.4833, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'image_id': 267417, 'bbox': [334.74, 123.34, 17.42, 33.25], 'category_id': 1, 'id': 2161890}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000267417.jpg'
ERROR:root:Error processing image {'id': 574497, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000574497.jpg', 'width': 640, 'height': 418, 'annotations': [{'segmentation': [[238.82, 264.66, 239.33, 242.01, 243.35, 240.5, 242.85, 226.41, 250.4, 211.31, 260.97, 201.24, 257.95, 184.63, 266.51, 174.06, 277.08, 175.06, 282.62, 178.08, 284.63, 187.65, 296.21, 194.19, 299.73, 203.25, 311.31, 211.31, 314.33, 227.92, 314.33, 241.51, 309.8, 247.55, 304.76, 261.64, 275.57, 265.17, 251.91, 265.17]], 'num_keypoints': 9, 'area': 4889.02015, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 263, 190, 2, 281, 189, 2, 262, 209, 2, 297, 207, 2, 248, 233, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 275, 260, 2, 300, 260, 2, 245, 248, 2, 0, 0, 0, 246, 281, 1, 0, 0, 0], 'image_id': 574497, 'bbox': [238.82, 174.06, 75.51, 91.11], 'category_id': 1, 'id': 1724355}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000574497.jpg'
ERROR:root:Error processing image {'id': 574497, 'source': 'coco', 'path': '/content/drive/My Drive/cocodataset//train2017/000000574497.jpg', 'width': 640, 'height': 418, 'annotations': [{'segmentation': [[238.82, 264.66, 239.33, 242.01, 243.35, 240.5, 242.85, 226.41, 250.4, 211.31, 260.97, 201.24, 257.95, 184.63, 266.51, 174.06, 277.08, 175.06, 282.62, 178.08, 284.63, 187.65, 296.21, 194.19, 299.73, 203.25, 311.31, 211.31, 314.33, 227.92, 314.33, 241.51, 309.8, 247.55, 304.76, 261.64, 275.57, 265.17, 251.91, 265.17]], 'num_keypoints': 9, 'area': 4889.02015, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 263, 190, 2, 281, 189, 2, 262, 209, 2, 297, 207, 2, 248, 233, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 275, 260, 2, 300, 260, 2, 245, 248, 2, 0, 0, 0, 246, 281, 1, 0, 0, 0], 'image_id': 574497, 'bbox': [238.82, 174.06, 75.51, 91.11], 'category_id': 1, 'id': 1724355}]}
Traceback (most recent call last):
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 2194, in data_generator_keypoint
load_image_gt_keypoints(dataset, config, image_id, augment, use_mini_mask=config.USE_MINI_MASK)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/model.py", line 1732, in load_image_gt_keypoints
image = dataset.load_image(image_id)
File "/content/drive/My Drive/Keypoints-of-humanpose-with-Mask-R-CNN-master/utils.py", line 418, in load_image
image = skimage.io.imread(self.image_info[image_id]['path'])
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_io.py", line 48, in imread
img = call_plugin('imread', fname, plugin=plugin, **plugin_args)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/manage_plugins.py", line 210, in call_plugin
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/skimage/io/_plugins/imageio_plugin.py", line 10, in imread
return np.asarray(imageio_imread(*args, **kwargs))
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 221, in imread
reader = read(uri, format, "i", **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/functions.py", line 130, in get_reader
request = Request(uri, "r" + mode, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 125, in init
self._parse_uri(uri)
File "/usr/local/lib/python3.6/dist-packages/imageio/core/request.py", line 273, in _parse_uri
raise FileNotFoundError("No such file: '%s'" % fn)
FileNotFoundError: No such file: '/content/drive/My Drive/cocodataset/train2017/000000574497.jpg'

@SaiXilinx
Copy link

@Mstfakts did you find a solution?

@Mstfakts
Copy link
Author

I noticed that when I unzip train2017, it does not unzip all the files to drive. Actually, it may unzip all images but gdrive does not store 128000 images in a file. So, to train my model, each time I download-unzip-remove train2017 file on colab.

@xiaoshuomin
Copy link

xiaoshuomin commented Mar 6, 2021

@Mstfakts Hello, I have a similar problem, but I met it on PC. How did you solve it later?

@NazriHariz
Copy link

@Mstfakts Hello, may i know if you able to solve this problem?. would you share the solution please. Much appreciated

@Mstfakts
Copy link
Author

Hello all,
Since its been really long time ago, I actually do not remember how did I solve the problem. Sorry for that :(
Good luck whoever see this page

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants