-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdc_from_xacf.m
41 lines (36 loc) · 2.05 KB
/
dc_from_xacf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function dc = dc_from_xacf(xacf_file,i)
% This function calculates Diffusion Coefficient (DC) from Position Autocorrelation Function (XACF)
% using the Generalized Langevin Method of Hummer(doi: 10.1088/1367-2630/7/1/034)
% Two input arguments:
% 1) xacf_file: Filename of calculated Autocorrelation functions for different umbrella sampling windows.
% Example: 'xacf_window_%d.xvg'
% In this case, the names of the files should be 'xacf_window_1.xvg', 'xacf_window_2.xvg', 'xacf_window_3.xvg', ...
% The first column in file should contain Time (in ps), and the second coulmn should have the correlation coefficients.
% 2) i: Total number of files
% Output:
% 1) DC values of all umbrella sampling windows in a array.
% Example:
% dc = dc_from_xacf('xacf_window_%d.xvg',20);
dc = zeros(i,1);
ps = zeros(i,1);
for n = 1:i
filename = sprintf(xacf_file,n);
delimiterIn =' ';
headerlinesIn = 17; % Number of header lines to ignore in XACF files
data = importdata(filename,delimiterIn,headerlinesIn);
frames = 999900; % Number of rows in the XACF file to consider
found_zero = (find (data.data(1:frames,2) <= 0));
found_zero(1);
var_c = 0.00005; % The curve is integrated untill its moving variance falls below var_c
window = 5000; % Window for moving variance calculation
MV = movvar(data.data(found_zero(1):frames,2),window);
found=(find(MV <= var_c));
cutoff = found(1) + found_zero(1);
c_ps = cutoff / 100;
fun = @(x) interp1(data.data(:,1),data.data(:,2), x, 'linear');
I=integral(fun,0,c_ps);
varZ = var( (data.data(1:cutoff,2)) );
dc(n) = (varZ) ./ I;
ps(n) = c_ps;
end
end