forked from stanford-oval/storm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
460 lines (369 loc) · 14.6 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import functools
import logging
import time
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Dict, List, Optional, Union
logging.basicConfig(
level=logging.INFO, format="%(name)s : %(levelname)-8s : %(message)s"
)
logger = logging.getLogger(__name__)
class Information(ABC):
"""Abstract base class to represent basic information.
Attributes:
uuid (str): The unique identifier for the information.
meta (dict): The meta information associated with the information.
"""
def __init__(self, uuid, meta={}):
self.uuid = uuid
self.meta = meta
class InformationTable(ABC):
"""
The InformationTable class serves as data class to store the information
collected during KnowledgeCuration stage.
Create subclass to incorporate more information as needed. For example,
in STORM paper https://arxiv.org/pdf/2402.14207.pdf, additional information
would be perspective guided dialogue history.
"""
def __init__(self):
pass
@abstractmethod
def retrieve_information(**kwargs):
pass
class ArticleSectionNode:
"""
The ArticleSectionNode is the dataclass for handling the section of the article.
The content storage, section writing preferences are defined in this node.
"""
def __init__(self, section_name: str, content=None):
"""
section_name: section heading in string format. E.g. Introduction, History, etc.
content: content of the section. Up to you for design choice of the data structure.
"""
self.section_name = section_name
self.content = content
self.children = []
self.preference = None
def add_child(self, new_child_node, insert_to_front=False):
if insert_to_front:
self.children.insert(0, new_child_node)
else:
self.children.append(new_child_node)
def remove_child(self, child):
self.children.remove(child)
class Article(ABC):
def __init__(self, topic_name):
self.root = ArticleSectionNode(topic_name)
def find_section(
self, node: ArticleSectionNode, name: str
) -> Optional[ArticleSectionNode]:
"""
Return the node of the section given the section name.
Args:
node: the node as the root to find.
name: the name of node as section name
Return:
reference of the node or None if section name has no match
"""
if node.section_name == name:
return node
for child in node.children:
result = self.find_section(child, name)
if result:
return result
return None
@abstractmethod
def to_string(self) -> str:
"""
Export Article object into string representation.
"""
def get_outline_tree(self):
"""
Generates a hierarchical tree structure representing the outline of the document.
Returns:
Dict[str, Dict]: A nested dictionary representing the hierarchical structure of the document's outline.
Each key is a section name, and the value is another dictionary representing the child sections,
recursively forming the tree structure of the document's outline. If a section has no subsections,
its value is an empty dictionary.
Example:
Assuming a document with a structure like:
- Introduction
- Background
- Objective
- Methods
- Data Collection
- Analysis
The method would return:
{
'Introduction': {
'Background': {},
'Objective': {}
},
'Methods': {
'Data Collection': {},
'Analysis': {}
}
}
"""
def build_tree(node) -> Dict[str, Dict]:
tree = {}
for child in node.children:
tree[child.section_name] = build_tree(child)
return tree if tree else {}
return build_tree(self.root)
def get_first_level_section_names(self) -> List[str]:
"""
Get first level section names
"""
return [i.section_name for i in self.root.children]
@classmethod
@abstractmethod
def from_string(cls, topic_name: str, article_text: str):
"""
Create an instance of the Article object from a string
"""
pass
def prune_empty_nodes(self, node=None):
if node is None:
node = self.root
node.children[:] = [
child for child in node.children if self.prune_empty_nodes(child)
]
if (node.content is None or node.content == "") and not node.children:
return None
else:
return node
class Retriever(ABC):
"""
An abstract base class for retriever modules. It provides a template for retrieving information based on a query.
This class should be extended to implement specific retrieval functionalities.
Users can design their retriever modules as needed by implementing the retrieve method.
The retrieval model/search engine used for each part should be declared with a suffix '_rm' in the attribute name.
"""
def __init__(self, search_top_k):
self.search_top_k = search_top_k
def update_search_top_k(self, k):
self.search_top_k = k
def collect_and_reset_rm_usage(self):
combined_usage = []
for attr_name in self.__dict__:
if "_rm" in attr_name and hasattr(
getattr(self, attr_name), "get_usage_and_reset"
):
combined_usage.append(getattr(self, attr_name).get_usage_and_reset())
name_to_usage = {}
for usage in combined_usage:
for model_name, query_cnt in usage.items():
if model_name not in name_to_usage:
name_to_usage[model_name] = query_cnt
else:
name_to_usage[model_name] += query_cnt
return name_to_usage
@abstractmethod
def retrieve(self, query: Union[str, List[str]], **kwargs) -> List[Information]:
"""
Retrieves information based on a query.
This method must be implemented by subclasses to specify how information is retrieved.
Args:
query (Union[str, List[str]]): The query or list of queries to retrieve information for.
**kwargs: Additional keyword arguments that might be necessary for the retrieval process.
Returns:
List[Information]: A list of Information objects retrieved based on the query.
"""
pass
class KnowledgeCurationModule(ABC):
"""
The interface for knowledge curation stage. Given topic, return collected information.
"""
def __init__(self, retriever: Retriever):
"""
Store args and finish initialization.
"""
self.retriever = retriever
@abstractmethod
def research(self, topic) -> InformationTable:
"""
Curate information and knowledge for the given topic
Args:
topic: topic of interest in natural language.
Returns:
collected_information: collected information in InformationTable type.
"""
pass
class OutlineGenerationModule(ABC):
"""
The interface for outline generation stage. Given topic, collected information from knowledge
curation stage, generate outline for the article.
"""
@abstractmethod
def generate_outline(
self, topic: str, information_table: InformationTable, **kwargs
) -> Article:
"""
Generate outline for the article. Required arguments include:
topic: the topic of interest
information_table: knowledge curation data generated from KnowledgeCurationModule
More arguments could be
1. draft outline
2. user provided outline
Returns:
article_outline of type ArticleOutline
"""
pass
class ArticleGenerationModule(ABC):
"""
The interface for article generation stage. Given topic, collected information from
knowledge curation stage, generated outline from outline generation stage,
"""
@abstractmethod
def generate_article(
self,
topic: str,
information_table: InformationTable,
article_with_outline: Article,
**kwargs,
) -> Article:
"""
Generate article. Required arguments include:
topic: the topic of interest
information_table: knowledge curation data generated from KnowledgeCurationModule
article_with_outline: article with specified outline from OutlineGenerationModule
"""
pass
class ArticlePolishingModule(ABC):
"""
The interface for article generation stage. Given topic, collected information from
knowledge curation stage, generated outline from outline generation stage,
"""
@abstractmethod
def polish_article(self, topic: str, draft_article: Article, **kwargs) -> Article:
"""
Polish article. Required arguments include:
topic: the topic of interest
draft_article: draft article from ArticleGenerationModule.
"""
pass
def log_execution_time(func):
"""Decorator to log the execution time of a function."""
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
start_time = time.time()
result = func(self, *args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"{func.__name__} executed in {execution_time:.4f} seconds")
self.time[func.__name__] = execution_time
return result
return wrapper
class LMConfigs(ABC):
"""Abstract base class for language model configurations of the knowledge curation engine.
The language model used for each part should be declared with a suffix '_lm' in the attribute name.
"""
def __init__(self):
pass
def init_check(self):
for attr_name in self.__dict__:
if "_lm" in attr_name and getattr(self, attr_name) is None:
logging.warning(
f"Language model for {attr_name} is not initialized. Please call set_{attr_name}()"
)
def collect_and_reset_lm_history(self):
history = []
for attr_name in self.__dict__:
if "_lm" in attr_name and hasattr(getattr(self, attr_name), "history"):
history.extend(getattr(self, attr_name).history)
getattr(self, attr_name).history = []
return history
def collect_and_reset_lm_usage(self):
combined_usage = []
for attr_name in self.__dict__:
if "_lm" in attr_name and hasattr(
getattr(self, attr_name), "get_usage_and_reset"
):
combined_usage.append(getattr(self, attr_name).get_usage_and_reset())
model_name_to_usage = {}
for usage in combined_usage:
for model_name, tokens in usage.items():
if model_name not in model_name_to_usage:
model_name_to_usage[model_name] = tokens
else:
model_name_to_usage[model_name]["prompt_tokens"] += tokens[
"prompt_tokens"
]
model_name_to_usage[model_name]["completion_tokens"] += tokens[
"completion_tokens"
]
return model_name_to_usage
def log(self):
return OrderedDict(
{
attr_name: getattr(self, attr_name).kwargs
for attr_name in self.__dict__
if "_lm" in attr_name and hasattr(getattr(self, attr_name), "kwargs")
}
)
class Engine(ABC):
def __init__(self, lm_configs: LMConfigs):
self.lm_configs = lm_configs
self.time = {}
self.lm_cost = {} # Cost of language models measured by in/out tokens.
self.rm_cost = {} # Cost of retrievers measured by number of queries.
def log_execution_time_and_lm_rm_usage(self, func):
"""Decorator to log the execution time, language model usage, and retrieval model usage of a function."""
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
self.time[func.__name__] = execution_time
logger.info(f"{func.__name__} executed in {execution_time:.4f} seconds")
self.lm_cost[func.__name__] = self.lm_configs.collect_and_reset_lm_usage()
if hasattr(self, "retriever"):
self.rm_cost[func.__name__] = (
self.retriever.collect_and_reset_rm_usage()
)
return result
return wrapper
def apply_decorators(self):
"""Apply decorators to methods that need them."""
methods_to_decorate = [
method_name
for method_name in dir(self)
if callable(getattr(self, method_name)) and method_name.startswith("run_")
]
for method_name in methods_to_decorate:
original_method = getattr(self, method_name)
decorated_method = self.log_execution_time_and_lm_rm_usage(original_method)
setattr(self, method_name, decorated_method)
@abstractmethod
def run_knowledge_curation_module(self, **kwargs) -> Optional[InformationTable]:
pass
@abstractmethod
def run_outline_generation_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run_article_generation_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run_article_polishing_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run(self, **kwargs):
pass
def summary(self):
print("***** Execution time *****")
for k, v in self.time.items():
print(f"{k}: {v:.4f} seconds")
print("***** Token usage of language models: *****")
for k, v in self.lm_cost.items():
print(f"{k}")
for model_name, tokens in v.items():
print(f" {model_name}: {tokens}")
print("***** Number of queries of retrieval models: *****")
for k, v in self.rm_cost.items():
print(f"{k}: {v}")
def reset(self):
self.time = {}
self.lm_cost = {}
self.rm_cost = {}