-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpseudo_label.py
237 lines (193 loc) · 8.29 KB
/
pseudo_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import os
import logging
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
import torch.backends.cudnn
from core.configs import cfg
from core.datasets import build_dataset
from core.models import build_feature_extractor, build_classifier
from core.utils.misc import mkdir, AverageMeter, intersectionAndUnionGPU, get_color_pallete
from core.utils.logger import setup_logger
from core.utils.pseudo_label import PseudoLabel
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "")] = value
return stripped_state_dict
def inference(feature_extractor, classifier, image, label, flip=True):
size = label.shape[-2:]
if flip:
image = torch.cat([image, torch.flip(image, [3])], 0)
with torch.no_grad():
output = classifier(feature_extractor(image))
output = F.interpolate(output, size=size, mode='bilinear', align_corners=True)
output = F.softmax(output, dim=1)
if flip:
output = (output[0] + output[1].flip(2)) / 2
else:
output = output[0]
return output.unsqueeze(dim=0)
def transform_color(pred):
synthia_to_city = {
0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7,
8: 8,
9: 10,
10: 11,
11: 12,
12: 13,
13: 15,
14: 17,
15: 18,
}
label_copy = 255 * np.ones(pred.shape, dtype=np.float32)
for k, v in synthia_to_city.items():
label_copy[pred == k] = v
return label_copy.copy()
def get_threshold(cfg):
logger = logging.getLogger("pseudo_label.trainer")
logger.info("Start inference on target dataset and get threshold of each class")
feature_extractor = build_feature_extractor(cfg)
device = torch.device(cfg.MODEL.DEVICE)
feature_extractor.to(device)
classifier = build_classifier(cfg)
classifier.to(device)
if cfg.resume:
logger.info("Loading checkpoint from {}".format(cfg.resume))
checkpoint = torch.load(cfg.resume, map_location=torch.device('cpu'))
model_weights = strip_prefix_if_present(checkpoint['feature_extractor'], 'module.')
feature_extractor.load_state_dict(model_weights)
classifier_weights = strip_prefix_if_present(checkpoint['classifier'], 'module.')
classifier.load_state_dict(classifier_weights)
feature_extractor.eval()
classifier.eval()
torch.cuda.empty_cache()
tgt_train_data = build_dataset(cfg, mode='test', is_source=False)
tgt_train_loader = torch.utils.data.DataLoader(tgt_train_data,
batch_size=cfg.SOLVER.BATCH_SIZE_VAL,
shuffle=False,
num_workers=4,
pin_memory=True,
sampler=None,
drop_last=False)
cpseudo_label = PseudoLabel(cfg)
for batch in tqdm(tgt_train_loader):
x, _, name = batch
tgt_input = x.cuda(non_blocking=True)
tgt_size = tgt_input.shape[-2:]
with torch.no_grad():
output = classifier(feature_extractor(tgt_input))
output = F.interpolate(output, size=tgt_size, mode='bilinear', align_corners=True)
cpseudo_label.update_pseudo_label(output)
thres_const = cpseudo_label.get_threshold_const(thred=0.9, percent=cfg.MODEL.THRESHOLD_PERCENT)
cpseudo_label.save_results()
return thres_const
def test(cfg, thres_const):
logger = logging.getLogger("pseudo_label.tester")
logger.info("Start testing")
device = torch.device(cfg.MODEL.DEVICE)
feature_extractor = build_feature_extractor(cfg)
feature_extractor.to(device)
classifier = build_classifier(cfg)
classifier.to(device)
if cfg.resume:
logger.info("Loading checkpoint from {}".format(cfg.resume))
checkpoint = torch.load(cfg.resume, map_location=torch.device('cpu'))
feature_extractor_weights = strip_prefix_if_present(checkpoint['feature_extractor'], 'module.')
feature_extractor.load_state_dict(feature_extractor_weights)
classifier_weights = strip_prefix_if_present(checkpoint['classifier'], 'module.')
classifier.load_state_dict(classifier_weights)
feature_extractor.eval()
classifier.eval()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
torch.cuda.empty_cache()
assert cfg.DATASETS.TEST == 'cityscapes_train'
dataset_name = cfg.DATASETS.TEST
output_folder = '.'
if cfg.OUTPUT_DIR:
output_folder = os.path.join(cfg.OUTPUT_DIR, "soft_labels", dataset_name)
mkdir(output_folder)
test_data = build_dataset(cfg, mode='test', is_source=False)
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=cfg.SOLVER.BATCH_SIZE_VAL,
shuffle=False,
num_workers=4,
pin_memory=True,
sampler=None)
for index, batch in enumerate(test_loader):
if index % 100 == 0:
logger.info("{} processed".format(index))
x, y, name = batch
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True).long()
pred = inference(feature_extractor, classifier, x, y, flip=False)
output = pred.max(1)[1]
intersection, union, target = intersectionAndUnionGPU(output, y, cfg.MODEL.NUM_CLASSES, cfg.INPUT.IGNORE_LABEL)
intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
# save the pseudo label
pred = pred.cpu().numpy().squeeze()
pred_max = np.max(pred, 0)
pred_label = pred.argmax(0)
for i in range(cfg.MODEL.NUM_CLASSES):
pred_label[(pred_max < thres_const[i]) * (pred_label == i)] = 255
import pdb;pdb.set_trace()
mask = get_color_pallete(pred_label, "city")
mask_filename = name[0] if len(name[0].split("/")) < 2 else name[0].split("/")[1]
mask.save(os.path.join(output_folder, mask_filename))
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(cfg.MODEL.NUM_CLASSES):
logger.info(
'{} {} iou/accuracy: {:.4f}/{:.4f}.'.format(i, test_data.trainid2name[i], iou_class[i], accuracy_class[i]))
def main():
parser = argparse.ArgumentParser(description="PyTorch Target Pseudo Label Testing")
parser.add_argument("-cfg",
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = cfg.OUTPUT_DIR
if save_dir:
mkdir(save_dir)
logger = setup_logger("pseudo_label", save_dir, 0)
logger.info(cfg)
logger.info("Loaded configuration file {}".format(args.config_file))
logger.info("Running with config:\n{}".format(cfg))
thres_const = get_threshold(cfg)
test(cfg, thres_const)
if __name__ == "__main__":
main()