-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_fig2.jl
executable file
·187 lines (157 loc) · 4.01 KB
/
make_fig2.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
include("src/kalmanbucy.jl")
using .kalmanbucy
using Statistics
Ntrials = 100
T = 1000
dt = 0.001
N = ceil(Int, T / dt)
par = [1.0, 2.0, 3.0]
decpar = [10.0, sqrt(0.2), 3.0]
rates = [0.03, 0.03, 0.0]
window = 20000 #window for moving averages
#----------------------------------------------------------------------
# Run simulation without learning
#----------------------------------------------------------------------
println("WITHOUT LEARNING")
#multiple trials
avgmse = zeros(N)
println("running simulations...")
for i = 1:Ntrials
println(i)
t, X, dY, mu, P, af, bf, wf, mse = path(T, dt, par, decpar, 0 * rates)
avgmse = avgmse + mse
end
mse = avgmse / Ntrials
#moving average
println("computing moving average...")
mvavg = zeros(N)
mvavg[1] = mean(mse[1:window])
@time for i = 2:(N-window)
mvavg[i] = mvavg[i-1] - mse[i-1] / window + mse[i+window-1] / window
end
for i = (N-window+1):N-1
# println(i)
mvavg[i] = ((N - i + 1) * mvavg[i-1] - mse[i-1]) / (N - i)
end
mvavg1 = copy(mvavg)
#----------------------------------------------------------------------
# Run simulation with learning
#----------------------------------------------------------------------
println("WITH LEARNING")
#multiple trials
avgmse = zeros(N)
avgaf = zeros(Int64(T))
avgbf = zeros(Int64(T))
avgwf = zeros(Int64(T))
println("running simulations...")
for i = 1:Ntrials
println(i)
t, X, dY, mu, P, af, bf, wf, mse = path(T, dt, par, decpar, rates)
avgmse = avgmse + mse
avgaf = avgaf + af[1000:1000:N]
avgbf = avgbf + bf[1000:1000:N]
avgwf = avgwf + wf[1000:1000:N]
end
mse = avgmse / Ntrials
avgaf = avgaf / Ntrials
avgbf = avgbf / Ntrials
avgwf = avgwf / Ntrials
#moving average
println("computing moving average...")
mvavg = zeros(N)
mvavg[1] = mean(mse[1:window])
@time for i = 2:(N-window)
mvavg[i] = mvavg[i-1] - mse[i-1] / window + mse[i+window-1] / window
end
for i = (N-window+1):N-1
# println(i)
mvavg[i] = ((N - i + 1) * mvavg[i-1] - mse[i-1]) / (N - i)
end
mvavg2 = copy(mvavg)
#----------------------------------------------------------------------
# Run simulation with ground truth
#----------------------------------------------------------------------
println("GROUND TRUTH")
#multiple trials
N = Int64(cld(T, dt))
avgmse = zeros(N)
for i = 1:Ntrials
println(i)
t, X, dY, mu, P, af, bf, wf, mse = path(T, dt, par, par, 0 * rates)
avgmse = avgmse + mse
end
mse = avgmse / Ntrials
#moving average
mvavg = zeros(N)
println("computing moving average...")
mvavg[1] = mean(mse[1:window])
@time for i = 2:(N-window)
mvavg[i] = mvavg[i-1] - mse[i-1] / window + mse[i+window-1] / window
end
for i = (N-window+1):N-1
# println(i)
mvavg[i] = ((N - i + 1) * mvavg[i-1] - mse[i-1]) / (N - i)
end
mvavg3 = copy(mvavg)
#----------------------------------------------------------------------
# Produce figure
#----------------------------------------------------------------------
using Plots
fig2a = plot(;
ylabel="normalized mean squared error",
xlabel="time (in units of hidden state time-constant)",
grid=false,
ylimit=(0, 1.2)
)
plot!(
fig2a,
0:dt:(N-window)*dt, mvavg1[1:end-window+1];
color=:magenta, lw=2,
label="no learning"
)
plot!(
fig2a,
0:dt:(N-window)*dt, mvavg2[1:end-window+1];
color=:blue, lw=2,
label="learning"
)
plot!(
fig2a,
0:dt:(N-window)*dt, mvavg3[1:end-window+1];
color=:darkgray, lw=2,
label="ground truth"
)
fig2b = plot(;
ylabel="parameter estimates",
xlabel="time (in units of hidden state time-constant)",
grid=false,
# ylimit = (0, 1.2)
)
plot!(
fig2b,
avgaf;
color=:blue, lw=2,
label="ãₜ"
)
plot!(
fig2b,
avgbf;
color=:blue, lw=2, ls=:dash,
label="σ̃ₜ"
)
plot!(
fig2b,
avgwf;
color=:blue, lw=2, ls=:dot,
label="w̃ₜ"
)
hline!(fig2b, [par[1]]; color=:darkgray, lw=2, label="a₀")
hline!(fig2b, [par[2]]; color=:darkgray, lw=2, label="σ₀", ls=:dash)
hline!(fig2b, [par[3]]; color=:darkgray, lw=2, label="w₀", ls=:dot)
fig2 = plot(
fig2a, fig2b;
layout=(1, 2),
size=(1200, 400),
margin=1Plots.cm
)
savefig(fig2, "fig/fig2.png")