-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpharma_visualize.R
440 lines (305 loc) · 13.8 KB
/
pharma_visualize.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# Pharma visualize one: by Year Range, and Biological Sex -----------------
#### Data Source
## Table 39. Prescription drug use in the past 30 days,
## by sex, race and Hispanic origin, and age:
## United States, selected years
## 1988–1994 through 2015–2018
### https://www.cdc.gov/nchs/data/hus/2019/039-508.pdf
### https://www.cdc.gov/nchs/hus/contents2019.htm#Table-039
####
# Libraries ---------------------------------------------------------------
library(tidyverse)
library(here)
library(glue)
# Data and touch up -------------------------------------------------------
load(here::here("data", "tidy_data", "pharma_tidy.rda"))
names(pharma_tidy)
pharma_tidy$drug_use <- factor(pharma_tidy$drug_use ,
levels = c("At least one",
"At least three",
"At least five"))
save.image("~/R_STUDIO/Misc_Sub/data/tidy_data/Pharma_Data.RData")
# At least one ------------------------------------------------------------
## All Sexes
both_one <- pharma_tidy %>%
filter(drug_use == "At least one" , Sex == "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1),
breaks = seq(0, 55, by = 5))+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least one (1) prescription drug in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
both_one
## By Sex
gender_one <- pharma_tidy %>%
filter(drug_use == "At least one" , Sex != "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
facet_wrap(~Sex) +
scale_fill_gradient(low = "blue", high = "red") +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least one (1) prescription drug in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
gender_one
# Three or more -----------------------------------------------------------
## All Sexes
both_three <- pharma_tidy %>%
filter(drug_use == "At least three" , Sex == "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
facet_wrap(~Sex) +
scale_fill_gradient(low = "blue", high = "red") +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least three (3) prescription drug in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
## By Sex
gender_three <- pharma_tidy %>%
filter(drug_use == "At least three" , Sex != "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
facet_wrap(~Sex) +
scale_fill_gradient(low = "blue", high = "red") +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least three (3) prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)" ) +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
# Five or more ------------------------------------------------------------
## All Sexes
both_five <- pharma_tidy %>%
filter(drug_use == "At least five", Sex != "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1, accuracy = 1),
breaks = seq(0, 15, by = 3))+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_wrap(~Sex) +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least five (5) prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
## By Sex
gender_five <- pharma_tidy %>%
filter(drug_use == "At least five", Sex == "Both") %>%
ggplot(aes(x = Year_Range, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1, accuracy = 1),
breaks = seq(0,14, by = 2))+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
labs(y = " Percentage of USA Population", x = "",
title = "Person used at least five (5) prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
# Jump Graphs -------------------------------------------------------------
## Let's emphasize changes
jump_range <- c("1988–1994", "2015–2018")
## All Sexes
jump_both <- pharma_tidy %>%
filter(Sex == "Both", Year_Range %in% jump_range) %>%
ggplot(aes(x = drug_use, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_wrap(~Year_Range) +
labs(x = "Past 30 Days", y = " Percentage of USA Population",
title = "Person used prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.3)
jump_both
jump_sex <- pharma_tidy %>%
filter(Sex != "Both", Year_Range %in% jump_range) %>%
ggplot(aes(x = drug_use, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_grid(Sex ~ Year_Range) +
labs(x = "Prescripts (#)", y = " Percentage of USA Population",
title = "Person used prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.1)
jump_sex
pharma_tidy %>%
filter(Year_Range %in% jump_range) %>%
ggplot(aes(x = drug_use, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_grid(Year_Range ~ Sex) +
labs(x = "Past 30 Days", y = " Percentage of USA Population",
title = "Biological male used prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.1)
## By Sex :: Male
jump_male <- pharma_tidy %>%
filter(Sex == "Male", Year_Range %in% jump_range) %>%
ggplot(aes(x = drug_use, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_wrap(~Year_Range) +
labs(x = "Past 30 Days", y = " Percentage of USA Population",
title = "Biological male used prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.1)
## By Sex :: Female
jump_female <- pharma_tidy %>%
filter(Sex == "Female", Year_Range %in% jump_range) %>%
ggplot(aes(x = drug_use, y = Pop_Percent, fill = Pop_Percent) ) +
geom_col() +
guides(fill = "none") +
scale_y_continuous(labels = scales::label_percent(scale = 1) )+
coord_flip() +
scale_fill_gradient(low = "blue", high = "red") +
facet_wrap(~Year_Range) +
labs(x = "Past 30 Days", y = " Percentage of USA Population",
title = "Biological female used prescription drugs in past 30 days",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)") +
geom_text( aes(label = paste0({Pop_Percent},"%")), size = 3,
color= "white", hjust = 1.1)
## Data table
jump_chart <- pharma_tidy %>%
filter(Year_Range %in% jump_range) %>%
group_by(drug_use, Sex, Year_Range) %>%
summarize(Pop_Percent = Pop_Percent)
## Let's get the differences
jump_chart_early <- jump_chart %>% filter(Year_Range == "1988–1994")
jump_chart_late <- jump_chart %>% filter(Year_Range != "1988–1994")
## Here?
jump_chart_late$Diff <- jump_chart_late$Pop_Percent - jump_chart_early$Pop_Percent
## No, add them back to main Jump data
diff_vec <- c(-6.6, 6.6, -4.5, 4.5, -9.0, 9.0, -9.5, 9.5,
-8.7, 8.7, -10.6 ,10.6 , -7.2, -7.2, -6.7, 6.7 , -7.9, 7.9)
jump_chart$Diff <- diff_vec
## Difference Plot
diff_plot <- jump_chart_late %>%
filter(Sex != "Both") %>%
ggplot( aes(x = drug_use, y = Diff, fill = Sex)) +
geom_col(position = "dodge") +
scale_fill_manual(values = c("green", "purple") ) +
labs(title = "Change from 1988–1994 to 2015–2018 in Prescription Drug Usage",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)" ,
x = "In the past 30 days, number used ...",
y = "Increase in Population %")
jump_chart_late %>%
filter(Sex != "Both") %>%
ggplot( aes(x = drug_use, y = Diff, fill = Diff)) +
geom_col(position = "dodge") +
scale_fill_gradient(low = "blue", high = "red") +
facet_grid(Sex ~.)+
guides(fill = "none") +
coord_flip() +
labs(title = "Change from 1988–1994 to 2015–2018 in Prescription Drug Usage",
subtitle = 'Source: cdc.gov/nchs/hus/contents2019.htm#Table-039',
caption ="Data Humanist, CC0 (Public Domain)" ,
x = "In the past 30 days, number used ...",
y = "Increase in Population %")
# See the jump tables -----------------------------------------------------
library(reactable)
## All sexes
jump_chart %>%
filter(Sex == "Both") %>%
reactable(., highlight = TRUE,
striped = TRUE,
pageSizeOptions = c(10, 25, 50, 100),
theme = reactableTheme(
stripedColor = "#EDEDED",
highlightColor = "#FFE4E1") )
## By Sex
jump_chart %>%
filter(Sex != "Both") %>%
reactable(., highlight = TRUE,
striped = TRUE,
pageSizeOptions = c(12),
theme = reactableTheme(
stripedColor = "#EDEDED",
highlightColor = "#FFE4E1") )
## Clean up a bit
jump_chart %>%
rename(Drug_Use = drug_use) %>%
filter(Year_Range == "2015–2018",
Sex == "Both") %>%
reactable(., highlight = TRUE,
striped = TRUE,
pageSizeOptions = c(10, 25, 50, 100),
theme = reactableTheme(
stripedColor = "#EDEDED",
highlightColor = "#FFE4E1") )
## Clean up a bit again
jump_chart %>%
rename(Drug_Use = drug_use) %>%
filter(Year_Range == "2015–2018",
Sex != "Both") %>%
reactable(., highlight = TRUE,
striped = TRUE,
pageSizeOptions = c(10, 25, 50, 100),
theme = reactableTheme(
stripedColor = "#EDEDED",
highlightColor = "#FFE4E1") )
# List of ggplots ---------------------------------------------------------
both_one
gender_one
both_three
gender_three
both_five
gender_five
jump_both
jump_female
jump_male
diff_plot
# Save --------------------------------------------------------------------
pharma_one_results <- c("both_five", "both_one" ,"both_three" ,"diff_plot",
"gender_five", "gender_one","gender_three",
"jump_both", "jump_male", "jump_female",
"jump_chart" , "pharma_tidy")
save(list = pharma_one_results, file = here::here("data",
"tidy_data",
"pharma_one_results.rda"))