Skip to content

Latest commit

 

History

History
188 lines (147 loc) · 6.62 KB

README.md

File metadata and controls

188 lines (147 loc) · 6.62 KB

Release Artifacts

Welcome to ZIO Kafka

ZIO Kafka provides a purely functional, streams-based interface to the Kafka client. It integrates effortlessly with ZIO and ZIO Streams.

Quickstart

Add the following dependencies to your build.sbt file:

libraryDependencies ++= Seq(
  "dev.zio" %% "zio-streams" % "1.0.0-RC17",
  "dev.zio" %% "zio-kafka"   % "<version>"
)

Somewhere in your application, configure the zio.kafka.ConsumerSettings data type:

import zio._, zio.duration._
import zio.kafka.client._

val settings: ConsumerSettings = 
  ConsumerSettings(
    bootstrapServers          = List("localhost:9092"),
    groupId                   = "group",
    clientId                  = "client",
    closeTimeout              = 30.seconds,
    extraDriverSettings       = Map(),
    pollInterval              = 250.millis,
    pollTimeout               = 50.millis,
    perPartitionChunkPrefetch = 2
  )

For a lot of use cases where you just want to do something with all messages on a Kafka topic, ZIO Kafka provides the convenience method Consumer.consumeWith. This method lets you execute a ZIO effect for each message. Topic partitions will be processed in parallel and offsets are committed after running the effect automatically.

import zio._
import zio.console._
import zio.kafka.client._
import zio.kafka.client.serde._

val subscription = Subscription.topics("topic")

Consumer.consumeWith(settings, subscription, Serde.string, Serde.string) { case (key, value) =>
  putStrLn(s"Received message ${key}: ${value}")
  // Perform an effect with the received message
}

If you require more control over the consumption process, read on!

Consuming Kafka topics using ZIO Streams

First, create a consumer using the ConsumerSettings instance:

import zio.ZManaged, zio.blocking.Blocking, zio.clock.Clock 
import zio.kafka.client.{ Consumer, ConsumerSettings }

val consumerSettings: ConsumerSettings = ???
val consumer: ZManaged[Clock with Blocking, Throwable, Consumer] = 
  Consumer.make(consumerSettings)

The consumer returned from Consumer.make is wrapped in a ZManaged to ensure its proper release. To get access to it, you can use the ZManaged#use method or compose other ZManaged instances with it using a for-comprehension. Here's an example using ZManaged#use:

import zio._, zio.blocking.Blocking, zio.clock.Clock 
import zio.kafka.client.Consumer

val consumer: ZManaged[Clock with Blocking, Throwable, Consumer] = ???
consumer.use { c =>
  // Consumer now available as `c`
  ZIO.unit
}

You may stream data from Kafka using the subscribe and plainStream methods. plainStream takes as parameters deserializers for the key and values of the Kafka messages. Serializers and deserializers (Serdes) for common data types are available in the Deserializer, Serializer, and Serde companion objects:

import zio.ZManaged, zio.blocking.Blocking, zio.clock.Clock, zio.console.putStrLn
import zio.stream._
import zio.kafka.client._
import zio.kafka.client.serde._

val consumer: ZManaged[Clock with Blocking, Throwable, Consumer] = ???

consumer.use { c =>
  c.subscribeAnd(Subscription.topics("topic150"))
    .plainStream(Serde.string, Serde.string)
    .flattenChunks
    .tap(cr => putStrLn(s"key: ${cr.record.key}, value: ${cr.record.value}"))
    .map(_.offset)
    .aggregateAsync(Consumer.offsetBatches)
    .mapM(_.commit)
    .runDrain
}

If you need to distinguish between the different partitions assigned to the consumer, you may use the Consumer#partitionedStream method, which creates a nested stream of partitions:

import zio.ZManaged, zio.blocking.Blocking, zio.clock.Clock, zio.console.putStrLn
import zio.stream._
import zio.kafka.client._
import zio.kafka.client.serde._

val consumer: ZManaged[Clock with Blocking, Throwable, Consumer] = ???

consumer.use { c =>
  c.subscribeAnd(Subscription.topics("topic150"))
    .partitionedStream(Serde.string, Serde.string)
    .tap(tpAndStr => putStrLn(s"topic: ${tpAndStr._1.topic}, partition: ${tpAndStr._1.partition}"))
    .flatMap(_._2.flattenChunks)
    .tap(cr => putStrLn(s"key: ${cr.record.key}, value: ${cr.record.value}"))
    .map(_.offset)
    .aggregateAsync(Consumer.offsetBatches)
    .mapM(_.commit)
    .runDrain
}

Example: consuming, producing and committing offset

This example shows how to consume messages from topic topic_a and produce transformed messages to topic_b, after which consumer offsets are committed. Processing is done in chunks using ZStreamChunk for more efficiency.

import zio.kafka.client._
import zio.kafka.client.serde._
import org.apache.kafka.clients.producer.ProducerRecord

val consumerSettings: ConsumerSettings = ???
val producerSettings: ProducerSettings = ???

(Consumer.make(consumerSettings) zip Producer.make(producerSettings, Serde.int, Serde.string)).use {
case (consumer, producer) =>
  consumer
      .subscribeAnd(Subscription.topics("my-input-topic"))
      .plainStream(Serde.int, Serde.long)
      .map { record =>
        val key: Int    = record.record.key()
        val value: Long = record.record.value()
        val newValue: String = value.toString

        val producerRecord: ProducerRecord[Int, String] = new ProducerRecord("my-output-topic", key, newValue)
        (producerRecord, record.offset)
      }
      .chunks
      .mapM { chunk =>
        val records     = chunk.map(_._1)
        val offsetBatch = OffsetBatch(chunk.map(_._2).toSeq)

        producer.produceChunk(records) *> offsetBatch.commit
      }
      .runDrain
}

Custom data type serdes

Serializers and deserializers (serdes) for custom data types can be constructed from scratch or by converting existing serdes. For example, to create a serde for an Instant:

import java.time.Instant
import zio.kafka.client.serde._

val instantSerde: Serde[Any, Instant] = Serde.long.inmap(java.time.Instant.ofEpochMilli)(_.toEpochMilli)

Getting help

Join us on the ZIO Discord server at the #zio-kafka channel.

Credits

This library is heavily inspired and made possible by the research and implementation done in Alpakka Kafka, a library maintained by the Akka team and originally written as Reactive Kafka by SoftwareMill.

Legal

Copyright 2019 Itamar Ravid and the zio-kafka contributors. All rights reserved.