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AI IS NOW USED IN MANY HIGH-STAKES DECISION MAKING APPLICATIONS

Credit Employment Admission Sentencing
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WHAT DOES IT TAKE TO TRUST A DECISION MADE BY A MACHINE (OTHER THAN THAT IT IS 99% ACCURATE)
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Is it fair?

Is it easy to

Did anyone
understand?

tamper with
it?

Is it accountable?
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THE QUEST FOR “EXPLAINABLE AI"

Companies Grapple With AI’s Opaque Decision-Making Process
THE WALL STREET JOURNAL.

Why Explainable Al Will Be the Next Big
Disruptive Trend in Business Al aieywaicn

When a Computer Program Keeps You in Jail

Don't Trust Artificial
Intelligence? Time To Open The
Al 'Black Box'
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WHY EXPLAINABLE AI?
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BUT WHAT ARE WE ASKING FOR?

Limits to based solely on automated processing and
profiling (Art.22)

Right to be provided with information about the logic
involved in the decision (Art.13 (2) i.and 15 (1) h)

8 x 2019 IBM Corporation Paul Nemitz, Principal Advisor, European Commission C@

Talk at IBM Research, Yorktown Heights, May, 4, 2018



WHY EXPLAINABLE AI?

Simplification
Understanding what’s truly happening can help build simpler systems.

Insight
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WHY EXPLAINABLE AI? (CONTINUED)

Debugging
Can help to understand what is wrong with a system.

Self driving car slowed down but
wouldn’t stop at red light???
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WHY EXPLAINABLE AI? (CONTINUED)

Existence of Confounders
Can help to identify spurious correlations.

Pneumonia

11 x 2019 IBM Corporation



WHY EXPLAINABLE AI? (CONTINUED)

Enhance Performance

Humans in combination with a system can be much more effective than just a more accurate system.

E results > O ~ ~

_ feedback, e.g.,
e labels/features
- I"M Person
| s ,| Output
N B Final result
- R
L y
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WHY EXPLAINABLE AI? (CONTINUED)

Fairness Robustness and Generalizability

Is the decision making system fair? Is the system basing decisions on
the correct features?

-~y
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WHY EXPLAINABLE AI? (CONTINUED)

Interesting article

Geoff Hinton Dismissed The Need For Explainable AI: 8 Experts Explain Why He's Wrong

Geoff Hinton Dismissed - The Need For Explainable AI: 8 Experts Explain Why He's Wrong
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https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/

THREE DIMENSIONS OF EXPLAINABILITY

One explanation does not fit all: There are many ways to explain things.

directly interpretable VS.

The oldest AI formats, such as decision rule
sets, decision trees, and decision tables are
simple enough for people to understand.
Supervised learning of these models is directly
interpretable.

global (model-level) VS.

Shows the entire predictive model to the user to
help them understand it (e.g. a small decision
tree, whether obtained directly or in a post hoc
manner).

static VS.

The interpretation is simply presented to the
user.

15 x 2019 IBM Corporation

post hoc interpretation
Start with a black box model and probe into it
with a companion model to create
interpretations. The black box model continues
to provide the actual prediction while the
interpretation improves human interactions.

local (instance-level)
Only show the explanations associated with
individual predictions (i.e. what was it about this
particular person that resulted in her loan being
denied).

interactive (visual analytics)
The user can interact with interpretation.

@



EXPLANATION METHOD TYPES

Directly interpretable

The oldest Al formats, such as decision rule sets, decision trees, and decision tables are simple
enough for people to understand. Supervised learning of these models is directly interpretable.

Decision Tree

(Quinlan 1987)
More than 5
legs?
no egs yes
- Is hiding under
Delicious? your bed?
V yes no yes
On back of Star of Star of
Australian 5- Charlotte’s Makes honey? Charlotte’s
cent coin? Web? Web?
no yes no yes no es no yes
Kitty cat! Echidna! Bison! | Pig! Mosquito! Honeybee! Bed bug! Spider!
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if

else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else

Rule List

capital-gain>$7298.00
Young,Never-married,
Grad-school,Married,
Young,capital-loss=0,
Own-child,Never-married,
Bachelors,Married,
Bachelors,Over-time,
Exec-managerial, Married,
Married,HS-grad,
Grad-school,
Some-college,Married,
Prof-specialty,Married,
Assoc-degree,Married,
Part-time,

Husband,

Prof-specialty,
Exec-managerial,Male,
Full-time,Private,

(default rule)

(Wang and Rudin 2016)

then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K
then probability to make over 50K

= 0.986
= 0.003
= 0.748
= 0.072
= 0.015
= 0.655
= 0.255
= 0.531
= 0.300
= 0.266
= 0.410
=0.713
= 0.420
= 0.013
= 0.126
=0.148
=0.193
= 0.026
= 0.066.



EXPLANATION METHOD TYPES (CONTINUED)

Post hoc interpretation

Start with a black box model and probe into it with a companion model to create interpretations. The

black box model continues to provide the actual prediction while interpretation improve human
interactions.

(Deep) Neural Network Ensembles
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EXPLANATION METHOD TYPES (CONTINUED)

Post hoc (local) interpretation

Locally Interpretable Model Agnostic Explanations (LIME)

Figure 1. Toy example to present intuition for LIME. The black-
box modcl’s complex decision function f (unknown to LIME)
is represented by the blue/pink background. The bright bold red
cross is the instance being explained. LIME samples instances,
gets predictions using [, and weighs them by the proximity to the
instance being explained (represented here by size). The dashed
line is the explanation that is locally (but not globally) faithful.
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(Ribeiro et. al. 2016)

LOAN APPLICATION

— 3““"

Algorithm 1 Sparse Lincar Explanations using LIME
Require: Classifier [, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7., Length of explanation K
Z <« {}
foric {1,2,3,...,N} do
z! + sample_around(z")
2 2U(z, f(z), ma(z))
end for
w ¢ K-Lasso(Z, K) © with 2] as features, f(z) as target
return w




EXPLANATION METHOD TYPES (CONTINUED)

Post hoc (local) interpretation

Maximum Mean Discrepancy Critic

(Kim et. al. 2016) Health care
Prototypes
v o

Prototypes

4 ) @ -
~ Criticisms

[l

y %! ‘\ ! " | z
_ Criticisms

Figure 2: Learned prototypes and criticisms from Imagenet dataset (two types of dog breeds)
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EXPLANATION METHOD TYPES (CONTINUED)

Post hoc (local) interpretation

Saliency Maps

(Sinmoyan et. al. 2013)

20 x 2019 IBM Corporation
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EXPLANATION METHOD TYPES (CONTINUED)

Post hoc (global) interpretation

Knowledge Distillation
(Hinton et. al. 2015)

Low performing

Complex Systems
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EXPLANATION METHOD TYPES (CONTINUED)

Static/Interactive (visual) interpretation

Start with a black box model and probe into it with a companion model to create interpretations. The

black box model continues to provide the actual prediction while the interpretation improves human
interactions.

Deep Visualization
(Yosinski et. al. 2015)

conv5: (dog face + flower) conv5isi (human face + cat face) conv5i (cat face)

T e I gradient ascent|
4 . d whole layer. B '

input
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selected channel™ ] - ";jop’? \'m"agés'

v
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ONE EXPLANATION DOES NOT FIT ALL

Different stakeholders require explanations for different purposes and with
different objectives. Explanations will have to be tailored to their needs.

I
End users neeme
“Why did you recommend this treatment?” ‘

Who: Physicians, judges, loan officers, teacher evaluators I'
. . . . ) L . /]
WHhy: trust/confidence, insights(?) Sr— e
Affected users ' +4 @
“Why was my loan denied? How can I be approved?” > 1.500 = 1.50 +H .. S
, ] =
Who: Patients, accused, loan applicants, teachers £ A 1
_ Yes . ! .
Why: understanding of factors  Family | —_— Education |
Regulatory bodies
. e . > 2 51= 2,500 > 1.500 = 1.500
Prove that your system didn't discriminate. L
Who: EU (GDPR), NYC Council, US Gov't, etc. ’ Yes No income |

Why: ensure fairness for constituents

Al system builders/stakeholders
“Is the system performing well? How can it be improved?“

> 11€= 116.500

o o

Who: EU (GDPR), NYC Council, US Gov't, etc. " A ‘
t 25 |-
WHhy: ensure or improve performance
Predicted:
True: husky
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AIX360: IBM RESEARCH AI EXPLAINABILITY 360 TOOLKIT

Goals Trusted AI Toolkits

* Support a community of users and contributors who will
together help make models and their predictions more
transparent.

» Support and advance research efforts in explainability.
» Contribute efforts to engender trust in AL

v v v
Adversarial Al Al Causal

Explainability 10 algorithms to explain data and AI Robustness Fairness  Explainability Inference
Algorithms models + 2 metrics 360 360 360 360
Repositories github.ibm.com/AIX360

github.com/IBM/AIX360
Interactive aix360.mybluemix.net Why Explainable Al Will Be the Next Big
Experience Disruptive Trend in Business Al ateyweicn
API aix360.readthedocs.io Don't Trust Artificial
Tutorials 13 notebooks Intelligence? Time To Open The

. . .. Al 'Black Box'

(finance, healthcare, lifestyle, Attrition, etc.)

Developers > 15 Researchers + Software engineers Eﬁ;;:panies Grapple With AI’s Opaque Decision-Making Process

across YKT, India, Argentina THE WALL STREET JOURNAL



EXPLAINABILITY One-shot static or interactive explanation?
TAXONOMY & GU I DANCE static ‘ interactive tabular
_________________________________ : B image
Understand data or model? fl, text
data ‘ model
| l
Explanations as samples, Explanations for individual samples (local) or
distributions or features? overall behavior (global)?
distributions samples features local ‘ global
3 ProtoDash DIP-VAE A directly interpretable model A gi‘reztsht,higtt:eers;?;zzlt?or::geI
! S :
— - or posthoc explanations? P
Case-based Learning
reasoning meaningful posthoc self-explaining direct posthoc
features
! J ! )
Explanations based on TED BRCG or GLRM A surrogate model or
samples or features? s - visualize behavior?
samples ‘ features Persona-specific Easy to surrogate visualize
| l explanations understand rules l T
v
CEM or CEM-MAF
ProtoDash - ProfWeight ?
S LIME, SHAP TR
Case-based reasoning . Learning accurate

Feature based explanations

interpretable model



AIX360: AI EXPLAINABILITY OPENSOURCE LANDSCAPE

IBM AIX360

Toolkit Data Directly Local Global Custom
Explanations | Interpretable Post-hoc Post-hoc Explanation
5 1 1 2

Seldon Alibi
Oracle Skater v
H20

S N NN

Microsoft
Interpret

Ethical ML

NN N

DrWhyDalEx

All algorithms of AIX360 are developed by IBM Research

AIX360 also provides demos, tutorials, and guidance on explanations for different use cases.

Paper: One Explanation Does Not Fit All: A Toolkit and Taxonomy of Al Explainability Techniques:
27 2019 To Corporation https://arxiv.org/abs/1909.03012v1



https://arxiv.org/abs/1909.03012v1
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Summary and Future Directions

* Algorithm Summary
» AIX360 for Developers
» Future Directions in Explainability

e Future Directions for AIX360

37 x 2019 IBM Corporation
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ALGORITHMS ALREADY One-shot static or interactive explanation?
FEATURED static | _ interactive _ b
\ } B image
Understand data or model? .vl, text
data ‘ model
| l
Explanations as samples, Explanations for individual samples (local) or
distributions or features? overall behavior (global)?
distributions samples features local ‘ global
i- ....................... - l l ‘ ‘
? ProtoDash DIP-VAE A self-explaining model or A directly interpretab|e. mOdeI
o - post hoc explanations? or post hoc explanations?
Case-based Learning
reasoning meaningful post hoc | self-explaining direct post hoc
features
! J ! )
Explanations based on GLRM A surrogate model or
samples or features? s - visualization?

samples ‘ features Persona-specific Easy to surrogate visualize

| l explanations understand rules l T !

CEM ’
ProtoDash it fid 5

1 | | 1 [ ’

Case-based reasoning [ [ | Learning accurate
interpretable model

Feature based explanations




-sh . . . I ion?

OTHER IBM ALGORITHMS One-shot static or interactive explanation

static ‘ interactive " tabular
e : B image
Understand data or model? .vl, text
data ‘ model
| l
Explanations as samples, Explanations for individual samples (local) or
distributions or features? overall behavior (global)?
distributions samples features local ‘ global
i- ....................... - l l ‘ ‘
? A self-explaining model or A directly interpretab|e mOdeI
’ ions? or post hoc explanations?
[ - post hoc explanations? P p
Case-based Learning
reasoning meaningful post hoc | self-explaining direct post hoc
features

! J ! )

Explanations based on TED BRCG A surrogate model or
samples or features? s - visualization?
samples ‘ features Persona-specific Easy to surrogate visualize
| l explanations understand rules l """"""""" !
CEM-MAF _ ’
. ProfWeight 2
1 | | 1 [ ’
Case-based reasoning [ [ | Learning accurate
interpretable model

Feature based explanations



CEM-MAF: CONTRASTIVE EXPLANATIONS FOR COMPLEX IMAGES
MODEL - LOCAL - POST HOC

INPUT INPUT + PN PP

CEM produces old, male, old, male.

« Pertinent positives (PP): Present, minimally sufficient to yield not smiling smiling 20 features

classification

» Pertinent negatives (PN): Absent but (minimal) addition
would change classification

Define addition in terms of higher-level concepts

e.g. high cheekbones, hair color, hair length

young, female,  young, male,

not smiling not smiling 5 features

Represent concepts using monotonic attribute functions (MAF)

Advantages:

» More realistic output images
+ Interpretable additions (PN) + single hair
color, - bangs
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BRCG: BOOLEAN RULES VIA COLUMN GENERATION
MODEL - GLOBAL - DIRECTLY INTERPRETABLE

Learns Boolean rules for binary classification
» Disjunctive normal form (DNF, OR of ANDs)
» Conjunctive normal form (CNF, AND of ORs)

S conees a0 Debosion Lo Y Credtiskehig

BRCG and GLRM are complementary rule-based methods

] GLRM BRCG

Model produced Generalized linear model Binary classifier
(e.g. linear/logistic regression)

Rule combination method Linear combination Logical OR or AND

Directly interpretable? Yes Even more so

How interpretability achieved Few rules, short rules

Optimization technique Column generation
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PROFWEIGHT: IMPROVING INTERPRETABLE SURROGATES

=)

MODEL - GLOBAL - POST HOC

Re-weightI

1\
(X
«
o}o

K
N
i\\
W/
b
X
‘;

RSO "“/
Transfer \“'// \\ ' output layer
information input layer

to improve hidden layer 1 hidden layer 2
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TED: TEACHING EXPLANATIONS FOR AI DECISIONS
MODEL - LOCAL - SELF-EXPLAINING

Different explanation consumers require different explanations

New features (X)

Training TED
Dataset ——» Framework
(X, Y E)

Prediction (Y)
and
Explanation (E)

Consumer provides training explanations in addition to training labels
Learn to predict both label and explanation for unseen data point
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Summary and Future Directions

Algorithm Summary

AIX360 for Developers

Future Directions in Explainability

Future Directions for AIX360



AIX360 CLASS HIERARCHY

O DIExplainer (Directly Interpretable unsupervised)
» ProtodashExplainer
» DIPVAEExplainer

O DISExplainer (Directly Interpretable Supervised)
» BRCGExplainer
» GLRMExplainer
» TED_CartesianExplainer

O LocalBBExplainer (Local Black-Box)
» LIME Explainers
» SHAP KernelExplainer
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O LocalWBExplainer (Local White-Box)
» CEMExplainer
» CEM_MAFImageExplainer
» SHAP Explainers

O GlobalBBExplainer (Global Black-Box)

O GlobalWBExplainer (Global White-Box)
> ProfweightExplainer



CLASSES IN ML PIPELINE

Data Explanations — Directly Interpretable = Persona-Specific Global Post-hoc Local Post-hoc
ProtodashExplainer BRCGExplainer TED_CartesianExplainer ProfweightExplainer CEMExplainer
DIPVAEEXxplainer GLRMExplainer CEMMAFImageExplainer
Training Train Debug Deploy Model Model Inference
Data ~ 777" * Model "~ *  Trainedmodel ~ 7T T TTTTTTTTTTooos > with explanations

T & Training data
|
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Summary and Future Directions
 Algorithm Summary

» AIX360 for Developers

* Future Directions in Explainability

e Future Directions for AIX360
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FUTURE DIRECTIONS

Local-to-Global Interpretation

Local explanation methods could
» Extract useful features or a superset of rules to be passed to logic programs

» Beintegrated into a coarse-to-fine hierarchy of explanations

Boolean Formula Globally Transparent Model
s s (1 Vo V3) A (=21 V —22 V ~24) S like shape
Y N
Horizontal
line top right
Y N
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FUTURE DIRECTIONS

Causality

What is the true cause for an event? Interpretability methods can be used to identify where to look
(reduce search space) before causal methods are applied.
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FUTURE DIRECTIONS

Reinforcement Learning

Explanation methods are essentially communication methods that convey feature importances or

representative examples. One could envision these methods being used in multiagent systems for
teaching one another.
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Summary and Future Directions
 Algorithm Summary

» AIX360 for Developers

 Future Directions in Explainability

* Future Directions for AIX360
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The future of AIX360 is people like you!
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CONTRIBUTING TO AIX360

Want to contribute?

« Start adiscussion in our Slack workspace

 Create a GitHub issue

» Get working!
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Kush Varshney 6:41 pm ¢ a9«
Hi @Arpit Sisodia, thanks for pointing these out. The trust score is a number that reports ho'
confident we should be in a classifier's prediction (as an alternative to some classifiers' own
confidence score, e.g. the margin). It won't act as a proxy (in lieu of a human judgment) for ha
good an explanation is. The linearity measure reports how locally linear the decision boundar
classifier is; for example, decision trees have fairly linear decision boundaries, whereas neares
neighbor classifiers tend to have more nonlinear decision boundaries. This also doesn't partic
report how good an explanation is.

g Arpit Sisodia 9:15 PM
& @Kush Varshney, makes sense.. | will go deeper into monotonicity and faithfulness of 360 an
back to u.. thanks for clarification.
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MISSING BRANCHES AND One-shot static or interactive explanation?

MODALITIES static | interactive "= tabular
T : B image
Understand data or model? :? text
data ‘ model ‘
| l
Explanations as samples, Explanations for individual samples (local) or
distributions or features? overall behavior (global)?

distributions samples features local ‘ global

E_ _______________________ - l l ‘ ‘

? A self-explaining model or A directly interpretab|e mOdeI

i ? or post hoc explanations?
H I ® post hoc explanations? P o]
post hoc self-explaining direct post hoc
! J ! )
Explanations based on A surrogate model or
samples or features? s @ visualization?
samples ‘ features surrogate visualize
l l l i
([ ] 2
[ [ | | [ [ | | .



AN INCOMPLETE WISH LIST One-shot static or interactive explanation?

. . . B tabul
(LIMITED BY OUR IMAGINATION) satic | interactive o
\ } B image
Understand data or model? .Vl, text
data ‘ model
| l
Explanations as samples, Explanations for individual samples (local) or
distributions or features? overall behavior (global)?
distributions samples features local ‘ global
? MMD-CritiC InfOGAN A self-explaining model or A directly interpretab|e. mOdeI
) post hoc explanations? or post hoc explanations?
post hoc self-explaining direct post hoc
! J ! )
Explanations based on GAMs A surrogate model or
samples or features? CORELS visualization?
Decision Trees . .
samples features surrogate visualize
l LRP l l W
Influence
functions Grad-CAM++ TREPAN PoP
Counterfactual Distillation/ ICE

Extraction NN layers



SUMMARY

« Why Explainable AI?
* Trust, societal calls, better systems, etc.

« AIX360 Toolkit
* Many ways to explain
* 10 algorithms and 2 metrics (currently)
» Data vs. model, local vs. global, direct vs. post hoc

» Toward an Explainability Community
» Users: web demo, 3 in-depth use cases
» Developers: Solicit contributions to fill in gaps and expand scope
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