diff --git a/notebooks/huggingface_notebook.ipynb b/notebooks/huggingface_notebook.ipynb index 9b813f8c7d..c6c6ce6335 100644 --- a/notebooks/huggingface_notebook.ipynb +++ b/notebooks/huggingface_notebook.ipynb @@ -134,7 +134,7 @@ " nb_classes=10,\n", " clip_values=(0, 1),\n", " processor=upsampler)\n", - " hf_model.fit(x_train, y_train, nb_epochs=2, display_progress_bar=True)\n", + " hf_model.fit(x_train, y_train, nb_epochs=2, verbose=True)\n", " return hf_model" ] }, @@ -701,7 +701,7 @@ " clip_values=(0, 1),\n", " processor=upsampler)\n", " (x_train, y_train), (x_test, y_test) = get_cifar_data(train_on_subset)\n", - " hf_model.fit(x_train, y_train, nb_epochs=2, display_progress_bar=True)\n", + " hf_model.fit(x_train, y_train, nb_epochs=2, verbose=True)\n", "\n", " return hf_model" ] @@ -1010,7 +1010,7 @@ " processor=None) # No processor is needed as the data is of the correct size for the model.\n", " \n", " (x_train, y_train), (x_test, y_test) = get_cifar_data()\n", - " simple_hf_classifier.fit(x_train, y_train, nb_epochs=20, display_progress_bar=True)\n", + " simple_hf_classifier.fit(x_train, y_train, nb_epochs=20, verbose=True)\n", "\n", " num_samples = 100\n", " outputs = simple_hf_classifier.predict(x_test[:num_samples])\n", @@ -1363,7 +1363,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.8.10" } }, "nbformat": 4,