-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheval_homography.py
113 lines (96 loc) · 5.21 KB
/
eval_homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import argparse
import os
import torch
from tqdm import tqdm
import cv2
import torch.nn.functional as F
def mnn_matcher(descriptors_a, descriptors_b, metric='cosine'):
device = descriptors_a.device
if metric == 'cosine':
descriptors_a = F.normalize(descriptors_a)
descriptors_b = F.normalize(descriptors_b)
sim = descriptors_a @ descriptors_b.t()
elif metric == 'l2':
dist = torch.sum(descriptors_a**2, dim=1, keepdim=True) + torch.sum(descriptors_b**2, dim=1, keepdim=True).t() - \
2 * descriptors_a.mm(descriptors_b.t())
sim = -dist
nn12 = torch.max(sim, dim=1)[1]
nn21 = torch.max(sim, dim=0)[1]
ids1 = torch.arange(0, sim.shape[0], device=device)
mask = (ids1 == nn21[nn12])
matches = torch.stack([ids1[mask], nn12[mask]])
return matches.t().data.cpu().numpy()
def generate_read_function(save_path, method, extension='ppm', top_k=None):
def read_function(seq_name, im_idx):
aux = np.load(os.path.join(save_path, seq_name, '%d.%s.%s' % (im_idx, extension, method)))
if top_k is None:
return aux['keypoints'], aux['descriptors']
else:
if len(aux['scores']) != 0:
ids = np.argsort(aux['scores'])[-top_k :]
if len(aux['scores'].shape) == 2:
scores = aux['scores'][0]
elif len(aux['scores'].shape) == 1:
scores = aux['scores']
ids = np.argsort(scores)[-top_k :]
return aux['keypoints'][ids, :], aux['descriptors'][ids, :]
else:
return aux['keypoints'][:, :2], aux['descriptors']
return read_function
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SPair-71k Evaluation Script')
parser.add_argument('--hpatches_path', type=str, default='/scratch/dift_release/d2-net/hpatches_sequences/hpatches-sequences-release', help='path to hpatches dataset')
parser.add_argument('--save_path', type=str, default='./hpatches_results', help='path to save features')
parser.add_argument('--feat', choices=['dift_sd', 'dift_adm'], default='dift_sd', help="which feature to use")
parser.add_argument('--metric', choices=['cosine', 'l2'], default='cosine', help="which distance metric to use")
parser.add_argument('--mode', choices=['ransac', 'lmeds'], default='lmeds', help="which method to use when calculating homography")
args = parser.parse_args()
seq_names = sorted(os.listdir(args.hpatches_path))
read_function = generate_read_function(args.save_path, args.feat)
th = np.linspace(1, 5, 3)
i_accuracy = []
v_accuracy = []
for seq_idx, seq_name in tqdm(enumerate(seq_names)):
keypoints_a, descriptors_a = read_function(seq_name, 1)
keypoints_a, unique_idx = np.unique(keypoints_a, return_index=True, axis=0)
descriptors_a = descriptors_a[unique_idx]
h, w = cv2.imread(os.path.join(args.hpatches_path, seq_name, '1.ppm')).shape[:2]
for im_idx in range(2, 7):
h2, w2 = cv2.imread(os.path.join(args.hpatches_path, seq_name, '{}.ppm'.format(im_idx))).shape[:2]
keypoints_b, descriptors_b = read_function(seq_name, im_idx)
keypoints_b, unique_idx = np.unique(keypoints_b, return_index=True, axis=0)
descriptors_b = descriptors_b[unique_idx]
matches = mnn_matcher(
torch.from_numpy(descriptors_a).cuda(),
torch.from_numpy(descriptors_b).cuda(),
metric=args.metric
)
H_gt = np.loadtxt(os.path.join(args.hpatches_path, seq_name, "H_1_" + str(im_idx)))
pts_a = keypoints_a[matches[:, 0]].reshape(-1, 1, 2).astype(np.float32)
pts_b = keypoints_b[matches[:, 1]].reshape(-1, 1, 2).astype(np.float32)
if args.mode == 'ransac':
H, mask = cv2.findHomography(pts_a, pts_b, cv2.RANSAC, ransacReprojThreshold=3)
elif args.mode == 'lmeds':
H, mask = cv2.findHomography(pts_a, pts_b, cv2.LMEDS, ransacReprojThreshold=3)
corners = np.array([[0, 0, 1],
[0, h-1, 1],
[w - 1, 0, 1],
[w - 1, h - 1, 1]])
real_warped_corners = np.dot(corners, np.transpose(H_gt))
real_warped_corners = real_warped_corners[:, :2] / real_warped_corners[:, 2:]
warped_corners = np.dot(corners, np.transpose(H))
warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]
mean_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1))
correctness = mean_dist <= th
if seq_name[0] == 'i':
i_accuracy.append(correctness)
elif seq_name[0] == 'v':
v_accuracy.append(correctness)
i_accuracy = np.array(i_accuracy)
v_accuracy = np.array(v_accuracy)
i_mean_accuracy = np.mean(i_accuracy, axis=0)
v_mean_accuracy = np.mean(v_accuracy, axis=0)
overall_mean_accuracy = np.mean(np.concatenate((i_accuracy, v_accuracy), axis=0), axis=0)
print('overall_acc: {}, i_acc: {}, v_acc: {}'.format(
overall_mean_accuracy * 100, i_mean_accuracy * 100, v_mean_accuracy * 100))