Skip to content

Latest commit

 

History

History
296 lines (225 loc) · 12.5 KB

README.md

File metadata and controls

296 lines (225 loc) · 12.5 KB

docxstruct

license

Docxstruct parses .hocr-output of ocromore to get a content-classified .json output for further database export. It is part of the Aktienführer-Datenarchiv work process, but can also be used independently.

Installation

To initialize the git submodules (~git version 2.7.4):

git submodule update --init --recursive

For development Pycharm IDE 2017.3 Community Edition was used

If using the Pycharm IDE to look at accumulated segmentation analysis files adapt the IDE settings to have proper view. This is in idea.properties-file which can i.e. be found over Help->Edit Custom Properties in Pycharm:

editor.soft.wrap.force.limit=10000

Handling Code

Docxstruct is made to be adapted for parsing other kinds of content than Aktienführer data. It can be used as generic text-content recognizer and classifier. Therefore it provides lot's of analysis and structure for that.

Usually all akf-specific content is stored in files which are called akf_XXX this are the parts where you might want to put your custom functionalities.

Ways how to do that are described in the following documentation parts.

input output example

In an example with Aktienführer data io is explained. This is the basic input which is usually in a hocr file.

            <title>OCR Results</title>
            <meta http-equiv="content-type" content="text/html; charset=utf-8" />
            <meta name='AKF-OCR' content='msa-combined' />
            <meta name='ocr-capabilities' content='ocr_line ocrx_word'/>
        </head>
        <body>
            <div class='ocr_page' title='image None; bbox 0 0 1046 9348'>
            <span class ='ocr_line' title='bbox 0 0 1046 9348' ><br/>
                <span  class ='ocrx_word' title='bbox 0 0 1046 9348' ></span >
            </span>
            <span class ='ocr_line' title='bbox 423 200 1683 271' ><br/>
                <span  class ='ocrx_word' title='bbox 423 200 798 271' >Überlandwerk</span >
                <span  class ='ocrx_word' title='bbox 824 200 1180 271' >Unterfranken</span >
                <span  class ='ocrx_word' title='bbox 1206 200 1682 271' >Aktiengesellschatt</span >
            </span>
            <span class ='ocr_line' t
...

This is a segmented not yet parsed output (segmentation simple analysis output) Segmentation starting tags are on the left. Actual input data on the right.

False                         ¦¦                            
Firmenname                    ¦¦Überlandwerk Unterfranken Aktiengesellschatt
Sitz                          ¦¦Sitz: 8700 Würzburg 2, Bismarckstraße
False                         ¦¦9-11, Postfach 1160         
Telefon/Fernruf               ¦¦Fernruf: (09 31) Sa.-Nr. 3 01
Fernschreiber                 ¦¦Fernschreiber: 6 8 827      
Vorstand                      ¦¦Vorstand:                   
False                         ¦¦Claus Bovenschen, Gerbrunn bei Würz-
False                         ¦¦burg;                       
False                         ¦¦Dr. Willibald Janßen, Würzburg

This is a part of the categorized json output for one segment ("Sitz" as example)

     "Sitz": [
          {
               "origpost": "(21b) Dortmund, Rheinische Str.73.",
               "type": "Sitz"
          },
          {
               "numID": "(21b)",
               "city": "Dortmund",
               "street": "Rheinische Str.",
               "street_number": "73"
          }
     ],

Creating segments

For creating a segment from input data. In your segment holder class (i.e. akf_segment_holder) create the code which recognizes start and optionally the stop condition of the segment. The segment recognition class should always inherit from Segment parent class (which gives a set of values and has abstract functions for matching). When creating a matching function (match_start_condition or match_stop_condition) make sure that the function has the same parameters as in the example (or as abstract functions in Segment).

If the match_stop_condition function is not defined, the segment will continue from the start line to the start of the next segment by default. This behaviour can also be specified in the configuration. The given segment tag to the parents constructor is used for common identification of the segment later. The match work function is used to log the segments data to properties of this segment.

The fuzzy search can be used to recognize messy results with a regex.

The match conditions themselves are checked automatically against each line until the segment has been found automatically.

    class SegmentVerwaltung(Segment):
        # example recognition:
        # Verwaltung: 8045 Ismaning bei Mün- \n chen ...
        # Verwaltungsrat:
        # Verw.: (20b) Hannover ...

        def __init__(self):
            super().__init__("Verwaltung")

        def match_start_condition(self, line, line_text, line_index, features, num_lines, prev_line, combined_texts):
            match_start, errors = regu.fuzzy_search(r"^((Verwaltung(:?srat\s?|\s?))|Verw\.\s?):", line_text, err_number=0)

            if match_start is not None:
                self.do_match_work(True, match_start, line_index, errors)
                return True

Parsing code

To use your custom parsing code instantiate your segment_parser FunctionMapAKF constructor. Make sure your function tag is the one used in the segment_classifier. For the keys in function_map use the keys noted in your segment holder (i.e. akf_segment_holder)

    self.akf_one = AkfParsingFunctionsOne(endobject_factory, output_analyzer)
    self.akf_two = AkfParsingFunctionsTwo(endobject_factory, output_analyzer)
    
    # for the keys use the keys from 'akf_segment_holder' or similar

    self.function_map = {
        "Sitz": self.akf_one.parse_sitz,
        "Verwaltung": self.akf_one.parse_verwaltung,
        "Telefon/Fernruf": self.akf_one.parse_telefon_fernruf,
        "Vorstand": self.akf_one.parse_vorstand,
        "Aufsichtsrat": self.akf_one.parse_aufsichtsrat,
        "Gründung": self.akf_one.parse_gruendung,
        "Arbeitnehmervertreter": self.akf_one.parse_arbeitnehmervertreter,
        "Tätigkeitsgebiet": self.akf_one.parse_taetigkeitsgebiet,
        "Zahlstellen": self.akf_two.parse_zahlstellen,
    }

Parsing functions

Here is an example of a mapped parsing function from above. These functions can be stored in a common parsing class like in akf_parsing_functions_one. The parameters have to be exactly the same like in example.

The add_check_element function adds in the output an additional element for this segment with the original data (for evaluation later). Also it improves the data to be better parsed. (recommended to use this function always) Options for this function can be found in the configuration.

To note results to final output the add_to_my_obj function is used. It works by simple key-value storing. If there are multiple objects within one segment element counter can be incremented to assign values to another segment. There is also an option to only store if the value has any content.

    def parse_gruendung(self, real_start_tag, content_texts, content_lines, feature_lines, segmentation_class):
        # get basic data
        element_counter = 0
        origpost, origpost_red, element_counter, content_texts = \
            cf.add_check_element(self, content_texts, real_start_tag, segmentation_class, element_counter)

        year = dh.strip_if_not_none(origpost_red, ".,\s")
        self.ef.add_to_my_obj("year", year, object_number=element_counter, only_filled=True)

Within such parsing functions (i.e. within akf_parsing_functions_one), you can log can log segment specific info to file:

self.output_analyzer.log_segment_information(segmentation_class.segment_tag, content_texts, real_start_tag)

Code analysis

There is lot's of analysis functionalities to check if the input data was correctly segmented and finally parsed. All analysis can be toggled in analysis settings in the conf files in configuration.

There's different mechanisms:

LOG_PARSED_SEGMENTED_OUTPUT = True                  # logs the parsed results in a file for each segmentation tag
LOG_SIMPLE = True                                   # Just simple and fast logging (without tablerecognition)
LOG_PARSED_TO_ORIG_DIFF_PER_CATEGORY = True         # logs the difference of parsed result and original segmented output for specific category
LOG_PARSED_TO_ORIG_ADD_OUTPUT_JSON = False          # in above logging add the output-json to the diff files
LOG_PARSED_TO_ORIG_DIFF_ACCUMULATED = True          # creates an accumulated report for differences from parsed to segmented output for each folder/akf-year
LOG_SEGMENTED_TO_ORIG_DIFF_PER_FILE = True          # (needs ADD_FULLTEXT_ENTRY enabled) logs the difference of segmented result and original segmented output for specific file/akf-table
LOG_SEGMENTED_TO_ORIG_ADD_OUTPUT_JSON = True        # in above logging add the output-json to the diff files
LOG_SEGMENTED_TO_ORIG_DIFF_ACCUMULATED = True       # creates an accumulated report for differences from segmented to original output for each folder/akf-year
JOIN_SEGMENTED_TEXTS_IN_ORIG_DIFF_PER_CATEGORY = True # the segmented texts get joined by algorithm which removes dashes and so on

Configuration

Which configuration file is used is specified in main_start.py here.

CODED_CONFIGURATION_PATH= './configuration/XXX.conf'

In the configuration files there are several options the same configuration keys which are in the given config files can be used as command line parameters also.

At the beginning a common singleton configuration object is created, which allows to access configuration global.

Configuration can be accessed in each class of the project without passing it through the constructors from the root class. In a non root-class the configuration can be initialised like this.

from akf_corelib.configuration_handler import ConfigurationHandler

class Example(object):
    def __init__(self):
        config_handler = ConfigurationHandler(first_init=False)

        self.config = config_handler.get_config()

Custom logging function

For general overview in the program output, custom logging functionality was created. It's recommended to use this and initialize it in the constructor of each class.

        self.cpr = ConditionalPrint(self.config.PRINT_SEGMENT_PARSER_AKF_FN_TWO, self.config.PRINT_EXCEPTION_LEVEL,
                                    self.config.PRINT_WARNING_LEVEL, leading_tag=self.__class__.__name__)

        self.cpr.print("init akf parsing functions two")

Logging with the cpr.print function adds a tag (here the class name) at the start of each output. It only logs if the PRINT_SEGMENT_PARSER_AKF_FN_TWO from config is set to True.

In this way you can toggle logging each class or even more specific areas by defining configuration parameters.

The warning and exception level tags will allow logging even if the base PRINT... parameter is False. The cpr.printex and cpr.printw functions provide colored output to hint exceptions (red) and warnings (yellow).

Further ideas

  • support for more input and output formats
  • adapt fuzzy-regexes and make the fuzzyness more configurable
  • adapt akf name parsing (especially the multi-title recognition)
  • modularize parsing and segmentation content so it can be completely swapped by a single configuration tag
  • provide common normalization methods for data

Copyright and License

Copyright (c) 2017 Universitätsbibliothek Mannheim

Author:

docxstruct is Free Software. You may use it under the terms of the Apache 2.0 License. See LICENSE for details.

Acknowledgements

The tools are depending on some third party libraries:

  • hocr-parser parses hocr files into a dictionary structure. Originally written by Athento.