-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCOPUS API
424 lines (305 loc) · 25.9 KB
/
SCOPUS API
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
### SCOPUS API ###
##################
library(data.table)
SCOPUS.test.VPresults <- fread("VPtest.tab")
### TO-DO: Insert own SCOPUS API key after apiKey=
### 1. Function to search and download JSON file of based on PMID
DownloadSCOPUSData <- function (PMID) {
library(curl)
library(jsonlite)
PMIDQuery <- paste0("PMID(", PMID)
SCOPUS.test.url <- paste0("https://api.elsevier.com/content/search/scopus?query=", PMIDQuery, ")&apiKey=&view=COMPLETE")
tmp <- tempfile("tmp", tmpdir = "./SCOPUS", fileext = ".txt")
curl_download(SCOPUS.test.url, tmp)
}
### TO-DO: replace the file name with the right YEAR and SPECIES (use search and replace all)
### Reading the PMCID CSV file and turn to tibble
library(readr)
EPMC.test.full.PMID.raw <- read_csv("./EPMC_Pig_2008_PMID.csv")
### turn to data.table
library(data.table)
EPMC.test.PMID.raw <- EPMC.test.Combine.dt.wide.raw.PMID.unlist.combine.dt
EPMC.test.full.PMID.import.dt <- data.table(EPMC.test.PMID.raw)
library(tidyr)
library(data.table)
EPMC.test.full.PMID.import.dt.raw <- EPMC.test.full.PMID.import.dt[, accession_number:=NULL]
EPMC.test.full.PMID.import.dt.long.dt <- data.table(gather(EPMC.test.full.PMID.import.dt.raw, EPMC_PMID_number, PMID))
# getting all PMIDs by removing NA
EPMC.test.full.PMID.import.dt.long.na.omit <- as.data.table(na.omit(EPMC.test.full.PMID.import.dt.long.dt, cols="PMID"))
# getting uinqiue PMIDs
EPMC.test.full.PMID.import.dt.long.na.omit.unique <- unique(EPMC.test.full.PMID.import.dt.long.na.omit, by="PMID")
# Convert the column class to integer
EPMC.test.full.PMID.import.dt.long.na.omit.unique[, PMID:=as.integer(PMID)]
library(plyr)
library(curl)
SCOPUS.test.raw <- do.call (cbind, adply(EPMC.test.full.PMID.import.dt.long.na.omit.unique$PMID, 1, function(PMID){
SCOPUS.test.raw <- ldply(PMID, DownloadSCOPUSData)
}, .progress = "text"))
# List the files in the folder, created by DownloadSCOPUSData
SCOPUS.test.raw.filelist <- list.files("./SCOPUS", pattern = "tmp")
### 2. Parse each JSON file downloaded, based on the file list
library(data.table)
library(plyr)
library(jsonlite)
SCOPUS.test.Combine.df <- ldply(SCOPUS.test.raw.filelist, function (x){
SCOPUS.test.raw.filename <- paste0("./SCOPUS/", x)
SCOPUS.test.raw.parsed <- fromJSON(SCOPUS.test.raw.filename)
SCOPUS.test.raw.parsed.raw <- SCOPUS.test.raw.parsed$`search-results`$entry
# obtain the PMID from the query
SCOPUS.test.raw.parsed.raw.PMID <- SCOPUS.test.raw.parsed$`search-results`$entry$`pubmed-id`
# convert the parsed JSON data to data.table
SCOPUS.test.raw.parsed.dt <- data.table(as.matrix(unlist(SCOPUS.test.raw.parsed.raw, recursive = FALSE), rowname.force = TRUE), keep.rownames = TRUE)
#attach PMID (based on query) to the parsed JSON data
SCOPUS.test.Combine.df <- data.table(PMID = SCOPUS.test.raw.parsed.raw.PMID, SCOPUS_data = SCOPUS.test.raw.parsed.dt)
})
# Convert the dataframe of JSON values to data.table
SCOPUS.test.Combine.dt <- as.data.table(SCOPUS.test.Combine.df)
### Spread the parsed JSON data to wide format
library(tidyr)
SCOPUS.test.Combine.dt.wide.raw <- spread(SCOPUS.test.Combine.dt, "SCOPUS_data.rn", "SCOPUS_data.V1", fill = NA)
library(data.table)
setkey(SCOPUS.test.Combine.dt.wide.raw, PMID)
### Unnest the affiliation list
SCOPUS.test.Combine.dt.wide.affiliation.raw.all <- data.table(PMID = SCOPUS.test.Combine.dt.wide.raw$PMID, SCOPUS.Affiliation.list = SCOPUS.test.Combine.dt.wide.raw$affiliation)
## Removing entries that affiliation list is NULL
SCOPUS.test.Combine.dt.wide.affiliation.raw <- SCOPUS.test.Combine.dt.wide.affiliation.raw.all[SCOPUS.Affiliation.list != "NULL"]
SCOPUS.test.Combine.dt.wide.affiliation.unnest <- unnest(SCOPUS.test.Combine.dt.wide.affiliation.raw, .id = "SCOPUS_PMID")
SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL <- SCOPUS.test.Combine.dt.wide.affiliation.raw.all[SCOPUS.Affiliation.list == "NULL"]
View(SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL)
colnames(SCOPUS.test.Combine.dt.wide.affiliation.unnest)
## if there is no null, can proceed to saving as full
# SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- SCOPUS.test.Combine.dt.wide.affiliation.unnest
## if there is NULL, replacing NULL in SCOPUS.Affiliation with NA in each column of unnested data.table
# list the column names of the unnested columns, apart from PMID
SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols <- colnames(SCOPUS.test.Combine.dt.wide.affiliation.unnest)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols.Length <- length(SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols.select <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols[2:SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols.Length]
# delete SCOPUS.Affiliation.list column Put NA in all but PMID columns as NA
SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL[, SCOPUS.Affiliation.list := NULL][, (SCOPUS.test.Combine.dt.wide.affiliation.unnest.cols.select) := NA]
### Combine (bind_rows) of the entries with unnested affilaitions and NULL affiliation
library(dtplyr)
SCOPUS.test.Combine.dt.wide.affiliation.unnest <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.unnest)
SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL)
library(dplyr)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- bind_rows(SCOPUS.test.Combine.dt.wide.affiliation.unnest, SCOPUS.test.Combine.dt.wide.affiliation.raw.NULL)
### if there is name variant in affiliation ###
# identify entries that name-variant is not null
setnames(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, "name-variant", "name_variant")
### dealing with name variant with specific PMID
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.nameVariant <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[name_variant != "NULL",]
View(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.nameVariant)
View(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.nameVariant$name_variant
#change affilname by PMID
#SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[PMID == "6327055", affilname := "Takeda Chemical Industries"]
# change affilname by original affilname
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[
affilname == "Bonner Forum Biomedizin and LIMES", affilname := "Bonner Forum Biomedizin and LIMES, Institut fur Physiologische Chemie and Abteilung für Zellbiochemie"][
affilname == "Ltd.", affilname := "Mitsui Knowledge Industry Co."][
affilname == "and Blood Inst.", affilname := "Natl. Heart Lung and Blood Inst."][
affilname == "John Radcliffe H.", affilname := "John Radcliffe H., Inst. Molec. Med."][
affilname == "Rochester School of Medicine Rochester", affilname := "Rochester School of Medicine Rochester, Department of Neurology"][
affilname == "Southern California School of Pharmacy Los Angeles", affilname := "Southern California School of Pharmacy Los Angeles, Department of Pharmaceutical Sciences"
]
## Change affilname by row number
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[
1906, affilname := "Genetech"][
1991, affilname := "Hayashibara Biochem. Labs."]
# delete name variant column
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[, name_variant := NULL]
### Alternative method
SCOPUS.test.Combine.dt.wide.affiliation.variant <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[name_variant != "NULL"]
SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw <- as.data.table(SCOPUS.test.Combine.dt.wide.affiliation.variant$name_variant)
setnames(SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw, c(colnames(SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw)), c("fa", "name_variant"))
SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw.variant <- SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw$name_variant
SCOPUS.test.Combine.dt.wide.affiliation.variant.dt <- SCOPUS.test.Combine.dt.wide.affiliation.variant[, name_variant := (SCOPUS.test.Combine.dt.wide.affiliation.variant.dt.raw.variant)]
SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full[name_variant == "NULL"]
SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL.dt <- SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL[, name_variant := NULL][, name_variant := NA]
library(dtplyr)
SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL.dt <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL.dt)
SCOPUS.test.Combine.dt.wide.affiliation.variant.dt <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.variant.dt)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full <- full_join(SCOPUS.test.Combine.dt.wide.affiliation.variant.NULL.dt, SCOPUS.test.Combine.dt.wide.affiliation.variant.dt)
### Write TSV of SCOPUS Affiliations FULL
library(readr)
write_tsv(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, "SCOPUSAffiliationNames.tsv")
###Getting Distinct entries of combination of afid and affilname
library(dplyr)
# SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid<- distinct(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, afid, affilname)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid <- distinct(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, afid, affilname, .keep_all = TRUE)
#SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctPMID <- distinct(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, PMID, .keep_all = TRUE)
write_tsv(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid, "SCOPUSAffiliationNames_Distinct.tsv")
View(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid)
### unnest the author list ###
library(data.table)
library(tidyr)
SCOPUS.test.Combine.dt.wide.author.raw.all <- data.table(PMID = SCOPUS.test.Combine.dt.wide.raw$PMID, SCOPUS.author.list = SCOPUS.test.Combine.dt.wide.raw$author)
## Removing entries that author list is NULL
SCOPUS.test.Combine.dt.wide.author.raw <- SCOPUS.test.Combine.dt.wide.author.raw.all[SCOPUS.author.list != "NULL"]
SCOPUS.test.Combine.dt.wide.author.unnest <- unnest(SCOPUS.test.Combine.dt.wide.author.raw, .id = "SCOPUS_PMID")
SCOPUS.test.Combine.dt.wide.author.raw.NULL <- SCOPUS.test.Combine.dt.wide.author.raw.all[SCOPUS.author.list == "NULL"]
SCOPUS.test.Combine.dt.wide.author.raw.NULL
## if there is no null, can proceed to saving as full
# SCOPUS.test.Combine.dt.wide.author.unnest.full <- SCOPUS.test.Combine.dt.wide.author.unnest
## if there is NULL, replacing NULL in SCOPUS.author with NA in each column of unnested data.table
# list the column names of the unnested columns, apart from PMID
SCOPUS.test.Combine.dt.wide.author.unnest.cols <- colnames(SCOPUS.test.Combine.dt.wide.author.unnest)
SCOPUS.test.Combine.dt.wide.author.unnest.cols.Length <- length(SCOPUS.test.Combine.dt.wide.author.unnest.cols)
SCOPUS.test.Combine.dt.wide.author.unnest.cols.select <- SCOPUS.test.Combine.dt.wide.author.unnest.cols[2:SCOPUS.test.Combine.dt.wide.author.unnest.cols.Length]
# delete SCOPUS.author.list column Put NA in all but PMID columns as NA
SCOPUS.test.Combine.dt.wide.author.raw.NULL[, SCOPUS.author.list := NULL][, (SCOPUS.test.Combine.dt.wide.author.unnest.cols.select) := NA]
### Combine (bind_rows) of the entries with unnested affilaitions and NULL author
library(dtplyr)
SCOPUS.test.Combine.dt.wide.author.unnest <- tbl_dt(SCOPUS.test.Combine.dt.wide.author.unnest)
SCOPUS.test.Combine.dt.wide.author.raw.NULL <- tbl_dt(SCOPUS.test.Combine.dt.wide.author.raw.NULL)
library(dplyr)
SCOPUS.test.Combine.dt.wide.author.unnest.full <- bind_rows(SCOPUS.test.Combine.dt.wide.author.unnest, SCOPUS.test.Combine.dt.wide.author.raw.NULL)
# separating entries that afid list for author is NULL
SCOPUS.test.Combine.dt.wide.author.unnest.afid.raw <- SCOPUS.test.Combine.dt.wide.author.unnest.full[afid != "NULL"]
SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL <- SCOPUS.test.Combine.dt.wide.author.unnest.full[afid == "NULL"]
SCOPUS.test.Combine.dt.wide.author.unnest.distinct <- distinct(SCOPUS.test.Combine.dt.wide.author.unnest.afid.raw, PMID, SCOPUS_PMID, `@seq`, authid, .keep_all = TRUE)
View(SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL)
# if there is NULL, replacing NULL by unlisting NULL lists, and then add NA
SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL[, afid := NULL][, afid := NA]
# unnesting the afid column of author lists
SCOPUS.test.Combine.dt.wide.author.unnest.afid <- unnest(SCOPUS.test.Combine.dt.wide.author.unnest.distinct, afid, .drop = FALSE, .sep = "_" )
# setting the name of the afid column as "afid"
setnames(SCOPUS.test.Combine.dt.wide.author.unnest.afid, 12, "afid")
SCOPUS.test.Combine.dt.wide.author.unnest.afid [, `afid_@_fa` := NULL]
library(dtplyr)
SCOPUS.test.Combine.dt.wide.author.unnest.afid <- tbl_dt(SCOPUS.test.Combine.dt.wide.author.unnest.afid)
SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL <- tbl_dt(SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL)
library(dplyr)
SCOPUS.test.Combine.dt.wide.author.unnest.afid.full <- bind_rows(SCOPUS.test.Combine.dt.wide.author.unnest.afid, SCOPUS.test.Combine.dt.wide.author.unnest.raw.NULL)
library(readr)
write_tsv(SCOPUS.test.Combine.dt.wide.author.unnest.afid.full, "SCOPUSAuthorNames.tsv")
###Getting Distinct entries of combination of author id, author name and afid
SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor <- distinct(SCOPUS.test.Combine.dt.wide.author.unnest.afid.full, authid, authname, afid, .keep_all = TRUE)
### if exceeds 5000 unique authors
# SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor <- distinct(SCOPUS.test.Combine.dt.wide.author.unnest.afid.full, authid, authname, .keep_all = TRUE)
# SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor <- distinct(SCOPUS.test.Combine.dt.wide.author.unnest.afid.full, authname, .keep_all = TRUE)
# #SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctPMID <- distinct(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full, PMID, .keep_all = TRUE)
write_tsv(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor, "SCOPUSAuthorNames_Distinct.tsv")
View(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor)
### Selecting columns of afid, affilname, affiliation-city, affiliation-country, (and name_variant)
SCOPUS.test.Combine.dt.wide.affiliation.afidList <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid[, .(afid, affilname, `affiliation-city`, `affiliation-country`)]
# If there is name-variant
# SCOPUS.test.Combine.dt.wide.affiliation.afidList <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid[, .(afid, affilname, `affiliation-city`, `affiliation-country`, name_variant)]
# Omit affilname with no/NA afid
SCOPUS.test.Combine.dt.wide.affiliation.afidList.naOmit <- na.omit(SCOPUS.test.Combine.dt.wide.affiliation.afidList, cols = "afid")
# Join author names with affiliation names based on afid
SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined <- SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor[SCOPUS.test.Combine.dt.wide.affiliation.afidList.naOmit, on = "afid"]
library(readr)
write_tsv(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined, "SCOPUSAuthorNames_Distinct_JoinedAfid.tsv")
# get affilnames that afid is NA
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na <- na.omit(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAfid, cols = "afid", invert = TRUE)
View(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na)
### If there are duplicates of affiliation in one PMID (don't work yet) ###
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate <- anyDuplicated(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na, by = "PMID")
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.row <- SCOPUS.test.Combine.dt.wide.affiliation.afidList.na[(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate),]
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows <- SCOPUS.test.Combine.dt.wide.affiliation.afidList.na[PMID == (SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.row$PMID)]
#SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows.affilname <- paste(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows$affilname, sep = ",")
#SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows.affilCity <- paste(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows$`affiliation-city`, sep = ",")
#SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows.affilCountry <- paste(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows$`affiliation-country`, sep = ",")
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows.Grouped <- group_by(SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.duplicate.AllRows, PMID)
### Selecting columns of afid, affilname, affiliation-city, affiliation-country, (and name_variant)
SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.list <- SCOPUS.test.Combine.dt.wide.affiliation.afidList.na[, .(PMID, afid, affilname, `affiliation-city`, `affiliation-country`)]
# If there is name-variant
# SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.list <- SCOPUS.test.Combine.dt.wide.affiliation.afidList.na[, .(afid, affilname, `affiliation-city`, `affiliation-country`, name_variant)]
# get authors that afid is NA
SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA <- na.omit(SCOPUS.test.Combine.dt.wide.affiliation.unnest.full.distinctAuthor, cols = "afid", invert = TRUE)
# Join author names of afid == NA with affiliation names based on PMID
library(dplyr)
SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA.joined <- full_join(SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA, SCOPUS.test.Combine.dt.wide.affiliation.afidList.na.list, by = "PMID")
SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA.joined <- SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA.joined[, afid.x := NULL][, afid.y := NULL][, afid := NA]
SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full<- bind_rows(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined, SCOPUS.test.Combine.dt.wide.author.unnest.afid.NA.joined)
library(readr)
write_tsv(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full, "SCOPUSAuthorNames_Distinct_JoinedAfid_full.tsv")
# how many unique PMIDs are there in the dataset for cleaning?
# SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full.PMID <- data.table(unique(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full$SCOPUS_PMID))
### Adding the year to dataset for cleaning
library(data.table)
SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full.year <- SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full[, YearOfENARecord := 2008]
library(readr)
write_tsv(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full.year, "SCOPUS_Pig_2008_AuthorNames_Distinct_JoinedAfid_full.tsv")
View(SCOPUS.test.Combine.dt.wide.author.unnest.afid.joined.NA.full.year)
# Create subset minus the afid
#library(dtplyr)
#SCOPUS.test.Combine.dt.wide.author.unnest <- tbl_dt(SCOPUS.test.Combine.dt.wide.author.unnest)
#SCOPUS.test.Combine.dt.wide.author.names.raw <- select(SCOPUS.test.Combine.dt.wide.author.unnest, -afid)
# create a table with only PMID and afid list (don't work yet)
SCOPUS.test.Combine.dt.wide.PMID.afid.raw <- data.table(PMID = SCOPUS.test.Combine.dt.wide.author.unnest$PMID, SCOPUS.afid.list = SCOPUS.test.Combine.dt.wide.author.unnest$afid)
SCOPUS.test.Combine.dt.wide.PMID.afid <- unnest(SCOPUS.test.Combine.dt.wide.PMID.afid.raw)
SCOPUS.test.Combine.dt.wide.afid.raw <- data.table(PMID = SCOPUS.test.Combine.dt.wide.author.unnest$PMID, SCOPUS.afid.list = SCOPUS.test.Combine.dt.wide.author.unnest$afid)
SCOPUS.test.Combine.dt.wide.afid.raw.unlist <- as.matrix(unlist(SCOPUS.test.Combine.dt.wide.afid.raw))
SCOPUS.test.Combine.dt.wide.afid.raw.mutate <- mutate(SCOPUS.test.Combine.dt.wide.afid.raw, SCOPUS.afid.list=strsplit(as.character(SCOPUS.afid.list), ","))
SCOPUS.test.Combine.dt.wide.afid.raw.mutate.unnest <- unnest(SCOPUS.test.Combine.dt.wide.afid.raw.mutate)
SCOPUS.test.Combine.dt.wide.afid.raw.nest <- nest(SCOPUS.test.Combine.dt.wide.afid.raw, PMID)
SCOPUS.test.Combine.dt.wide.afid.raw.unnest <- unnest(SCOPUS.test.Combine.dt.wide.afid.raw, .drop = .drop, .id = "SCOPUS_PMID")
SCOPUS.test.Combine.dt.wide.afid.raw.unlist <- unlist(SCOPUS.test.Combine.dt.wide.afid.raw$SCOPUS.afid.list)
SCOPUS.test.Combine.dt.wide.author.afid.unnest <- unnest(SCOPUS.test.Combine.dt.wide.afid.raw)
SCOPUS.test.Combine.dt.wide.afid.unnest <- unnest(SCOPUS.test.Combine.dt.wide.afid.raw, .id = "SCOPUS_PMID")
SCOPUS.test.Combine.dt.wide.author.unnest.afid <- unnest(SCOPUS.test.Combine.dt.wide.author.unnest$afid)
### In the case of interruption
#subset the PMIDs
EPMC.test.full.PMID.import.dt.long.na.omit.unique2 <- EPMC.test.full.PMID.import.dt.long.na.omit.unique[342:697,]
# DownloadSCOPUSData function (download JSON/txt files) continued from interruption
DownloadSCOPUSData2 <- function (PMID) {
library(curl)
library(jsonlite)
PMIDQuery <- paste0("PMID(", PMID)
SCOPUS.test.url <- paste0("https://api.elsevier.com/content/search/scopus?query=", PMIDQuery, ")&apiKey=78990569bc896922121f5c82e5d308ba&view=COMPLETE")
tmp <- tempfile("tmp2", tmpdir = "./SCOPUS", fileext = ".txt")
curl_download(SCOPUS.test.url, tmp)
}
# Downlaod hit count JSON 2
library(plyr)
library(curl)
SCOPUS.test.raw <- do.call (cbind, adply(EPMC.test.full.PMID.import.dt.long.na.omit.unique2$PMID, 1, function(PMID){
SCOPUS.test.raw <- ldply(PMID, DownloadSCOPUSData2)
}, .progress = "text"))
SCOPUS.test.Combine.dt.wide.raw.unlist <- data.table(as.matrix(unlist(SCOPUS.test.Combine.dt.wide.raw$affiliation, recursive = FALSE)))
SCOPUS.test.Combine.dt.wide.raw.unlist.dt <- data.table(PMID = SCOPUS.test.raw.parsed.raw.PMID , authorList = SCOPUS.test.Combine.dt.wide.raw.unlist)
SCOPUS.test.Combine.dt.wide.raw.unlist.authorList <- unnest(SCOPUS.test.Combine.dt.wide.raw.unlist.dt, .id = "SCOPUS_PMID")
### Alternative: Cleaning routines for affiliation ###
### create tbl_dt of selected variables (affiliation id, name, city and country)
library(dplyr)
SCOPUS.test.Combine.dt.wide.affiliation.unnest.tbl <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.unnest)
vars <- c("afid", "affilname", "affiliation-city", "affiliation-country")
SCOPUS.test.Combine.dt.wide.affiliation.dt.raw <- select(SCOPUS.test.Combine.dt.wide.affiliation.unnest.tbl, one_of(vars))
# remove duplicates based on unique affiliation id and affiliation name
SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct <-distinct(SCOPUS.test.Combine.dt.wide.affiliation.dt.raw, afid, affilname, .keep_all = TRUE)
#SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct2 <-distinct(SCOPUS.test.Combine.dt.wide.affiliation.dt.raw, afid, .keep_all = TRUE)
#highlgihting the different distinct results
#SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct.antijoin <- anti_join(SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct, SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct2)
### Create new column called affilnameCleaned, and copy the values in affilname
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw <- SCOPUS.test.Combine.dt.wide.affiliation.dt.distinct[, affilnameCleaned := affilname]
### to edit affilnameCleaned
#if afid == x or y, affilameCleaned write as z
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[afid=="60011394" | afid=="60003417", affilnameCleaned := "Universitat Wien"]
# Setting the afid as key
setkey(SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw, afid)
### Changing the vlaue of affilname in individual record
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[c(afid=="60000656"), affilnameCleaned := c("Seoul National University")]
### Changing the value of affilname of a list of records
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[c("60024834", "60005980", "60007971", "60029244", "60097542", "60031115", "60017994", "60021947", "60002106", "60021981"), affilnameCleaned := c("University of Nottingham", "Zoological Museum", "University of Copenhagen", "Veterinary Research Institute", "Central Institute for Research on Buffaloes", "University of Pennsylvania", "Yale University", "Indiana University", "Shinshu University", "Institute of Molecular and Cell Biology")]
### Creating a new cleaned city and cleaned country column
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw <- SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[, AffiliationCityCleaned := `affiliation-city`]
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw <- SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[, AffiliationCountryCleaned := `affiliation-country`]
### changing the value of cityCleaned
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[c("60103898"), AffiliationCityCleaned := c("Tokyo")]
### Changing the value of Country cleaned
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[c("60024445"), AffiliationCountryCleaned := c("Czech Republic")]
### Returning a data.table of cleaned data (FINAL)
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.dt <- SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.raw[,.(afid,affilnameCleaned,AffiliationCityCleaned,AffiliationCountryCleaned)]
SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.dt.unique <- unique(SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.dt, by = "affilnameCleaned")
### Subset columns of PMID and afid
SCOPUS.test.Combine.dt.wide.affiliation.unnest.PMIDafid <- SCOPUS.test.Combine.dt.wide.affiliation.unnest[,.(PMID, afid)]
SCOPUS.test.Combine.dt.wide.affiliation.unnest.PMIDafid <- tbl_dt(SCOPUS.test.Combine.dt.wide.affiliation.unnest.PMIDafid)
### join the records by afid
library(dtplyr)
SCOPUS.test.Combine.dt.wide.affiliation.PMIDafid.clean.dt <- left_join(SCOPUS.test.Combine.dt.wide.affiliation.unnest.PMIDafid, SCOPUS.test.Combine.dt.wide.affiliation.dt.clean.dt, by = "afid")
setcolorder(SCOPUS.test.Combine.dt.wide.affiliation.PMIDafid.clean.dt, c("PMID", "afid", "affilnameCleaned", "AffiliationCityCleaned", "AffiliationCountryCleaned"))
library(readr)
write_csv(SCOPUS.test.Combine.dt.wide.affiliation.PMIDafid.clean.dt, "AffiliationxPMID.csv")
### end of cleaning affiliation ###
### END ###