-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_change_ch_dc.py
53 lines (42 loc) · 2.4 KB
/
average_change_ch_dc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
import warnings
import numpy as np
import statistics as st
import helper_functions as hf
def calculate_change(cell_dataframes, cycles, instruction, target_value):
cell_sum = []
for cell_index, cell in enumerate(cell_dataframes):
cycle_sum = []
for cycle in cycles:
significant_data = cell
if cell_index == 0:
significant_data = significant_data[significant_data['Cycle'] == cycle]
significant_data = significant_data[significant_data['Instruction Name'] == instruction]
# Get beginning and end values
cycle_beginning_value = significant_data[target_value].iloc[0]
cycle_ending_value = significant_data[target_value].iloc[-1]
cycle_sum.append(abs(cycle_beginning_value - cycle_ending_value))
else:
significant_data = significant_data[significant_data['Cycle.' + str(cell_index)] == cycle]
significant_data = significant_data[significant_data['Instruction Name.' + str(cell_index)] == instruction]
# Get currents
cycle_beginning_value = significant_data[target_value + '.' + str(cell_index)].iloc[0]
cycle_ending_value = significant_data[target_value + '.' + str(cell_index)].iloc[-1]
cycle_sum.append(abs(cycle_beginning_value - cycle_ending_value))
cell_sum.append(st.mean(cycle_sum))
return st.mean(cell_sum)
# Suppress the DtypeWarning related to mixed data types in the CSV file
warnings.filterwarnings("ignore", category=pd.errors.DtypeWarning)
# Define file to analyse and relevant cycles in it
file_path = '24-003_PhysicalTwin_Diagnostic_Test14525.csv'
cycles = [ 2., 3., 4., 5.]
# Read csv data into pandas dataframe and reduce it to the needed values
battery_dataframe = pd.read_csv(file_path)
reduced_dataframe_battery = hf.reduced_dataframe(battery_dataframe, cycles)
# Split dataframe into dataframes per cell
cell_dataframes = hf.get_cell_dataframes(battery_dataframe)
# Calculate charge from each cell and print results
average_charge = calculate_change(cell_dataframes, cycles, 'V Charge', 'Charge Capacity (mAh)')
average_discharge = calculate_change(cell_dataframes, cycles, 'I Disch.', 'Discharge Capacity (mAh)')
print("Average change in ch: " + str(average_charge) + " mAh")
print("Average change in dc: " + str(average_discharge) + " mAh")