-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathCORDEX_CMIP6_status_by_experiment.py
91 lines (85 loc) · 3.69 KB
/
CORDEX_CMIP6_status_by_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import pandas as pd
import yaml
from funs import html_header, html_footer, html_legend, table_props
collapse_institutions = True
plans = pd.read_csv('CMIP6_downscaling_plans.csv', na_filter=False)
with open('CORDEX_CMIP6_experiments.yaml') as fp:
config = yaml.load(fp, Loader=yaml.FullLoader)
domains = config.keys()
f = open(f'docs/CORDEX_CMIP6_status_by_experiment.html','w')
f.write(html_header('CORDEX-CMIP6 experiment summary tables'))
f.write('<ul>')
[f.write(f'<li><a href="#{i}">{i}</a></li>') for i in domains]
f.write('</ul>')
d1 = dict(selector=".level1", props=table_props)
for domain in domains:
dom_plans = plans[plans.domain == domain]
tags = sorted(list(set(filter(lambda x: x.startswith('#'), dom_plans.comments.str.split(' ').agg(sum)))))
dconf = config[domain] if domain in config else dict()
if not tags:
continue
f.write(f'''<h2 id="{domain}">{domain}<a href="#top">^</a></h2>
The following experiments contribute to CORDEX {domain} domain:
<ul class="twocol">'''
)
[f.write(f'<li><a href="#{domain}-{i}">{dconf[i]["title"]}</a></li>') for i in dconf.keys()]
f.write('</ul>')
for tag in dconf.keys():
tconf = dconf[tag]
if 'condition' in tconf:
df = dom_plans.copy()
for cond in tconf['condition']:
if cond.startswith('tag:'):
df = df[df.comments.str.contains('#'+cond[4:], case=False, na=False)]
else:
df = df.query(cond)
else:
df = dom_plans[dom_plans.comments.str.contains(tag, case=False, na=False)]
if df.empty:
continue
collapse_institutions = tconf['collapse_institutions'] if 'collapse_institutions' in tconf else collapse_institutions
df = df.assign(htmlstatus=pd.Series('<span sort="' + df.experiment +'" class="' + df.status + '">' + df.experiment + '</span>', index=df.index))
df = df.assign(model_id=pd.Series(df.institute + '_' + df.rcm_name, index=df.index))
column_id = 'rcm_name' if collapse_institutions else 'model_id'
dom_plans_matrix = df.pivot_table(
index = ('driving_model', 'ensemble'),
columns = column_id,
values = 'htmlstatus',
aggfunc = lambda x: ' '.join(sorted(x.dropna()))
)
dom_plans_matrix = pd.concat([ # Bring ERA5 to the top
dom_plans_matrix.query("driving_model == 'ERA5'"),
dom_plans_matrix.drop(('ERA5',''), axis=0, errors='ignore')
], axis=0)
if collapse_institutions:
inst = df.drop_duplicates(subset=['institute','rcm_name']).pivot_table(
index = ('driving_model', 'ensemble'),
columns = 'rcm_name',
values = 'institute',
aggfunc = lambda x: ', '.join(sorted(x.dropna()))
).agg(lambda x: ', '.join(sorted(x.dropna())))
inst.name = ('','Institutes')
dom_plans_matrix = pd.concat([dom_plans_matrix, inst.to_frame().T])
dom_plans_matrix = dom_plans_matrix.T.set_index([('','Institutes'),dom_plans_matrix.columns]).T
dom_plans_matrix.columns.names = ['Institution(s)','RCM']
title = tconf['title'] if 'title' in tconf else tag
descr = tconf['description'] if 'description' in tconf else ''
url = f'<p>URL: <a href="{tconf["url"]}">{tconf["url"]}</a>' if 'url' in tconf else ''
f.write(f'''<h3 id="{domain}-{tag}">{title} <a href="#{domain}">^</a></h3>
<p> {descr}
{url}
{html_legend}
''')
f.write(dom_plans_matrix.style
.set_properties(**{'font-size':'8pt', 'border':'1px lightgrey solid !important'})
.set_table_styles([d1,{
'selector': 'th',
'props': [('font-size', '8pt'),('border-style','solid'),('border-width','1px')]
}])
.render()
.replace('nan','')
.replace('historical','hist')
)
collapse_institutions = True
f.write(html_footer())
f.close()