-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
104 lines (97 loc) · 4.73 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import pandas as pd
import torch
import json
from transformers import ViltProcessor, ViltForQuestionAnswering
from PIL import Image
def load_model(model_path, device):
num_list = [int(i) for i in range(528)]
label2id = dict(zip(num_list,num_list))
id2label = dict(zip(num_list,num_list))
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-mlm", num_labels=528,id2label=id2label,label2id=label2id)
if device == "cpu":
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
else:
model.load_state_dict(torch.load(model_path))
model.to(device)
return model
def load_disease_dict(dictionary_path):
with open(dictionary_path) as json_file:
disease_dict = json.load(json_file)
return disease_dict
def prepare_data(csv_file, base_image_path):
data = pd.read_csv(csv_file)
data['filename'] = data['filename'].apply(lambda x: f"{base_image_path}/{x}")
data['label'] = 0 #label is not important for inference
test_questions = []
for i in range(len(data)):
temp_dic = {'image_id':data.loc[i,'image_id'],'question':data.loc[i,'texts']}
test_questions.append(temp_dic)
test_annotations = []
for i in range(len(data)):
temp_dic = {'labels':[0],'scores':[1]}
test_annotations.append(temp_dic)
filename_to_id = {data.loc[i,'filename']: data.loc[i,'image_id'] for i in range(len(data))}
id_to_filename = {v:k for k,v in filename_to_id.items()}
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
num_list = [int(i) for i in range(528)]
label2id = dict(zip(num_list,num_list))
id2label = dict(zip(num_list,num_list))
class VQADataset(torch.utils.data.Dataset):
def __init__(self, questions, annotations, processor):
self.questions = questions
self.annotations = annotations
self.processor = processor
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
annotation = self.annotations[idx]
questions = self.questions[idx]
image = Image.open(id_to_filename[questions['image_id']])
text = questions['question']
encoding = self.processor(image, text, padding="max_length", truncation=True, return_tensors="pt")
for k,v in encoding.items():
encoding[k] = v.squeeze()
labels = annotation['labels']
scores = annotation['scores']
targets = torch.zeros(len(id2label))
for label, score in zip(labels, scores):
targets[label] = score
encoding["labels"] = targets
return encoding
test_dataset = VQADataset(questions = test_questions,
annotations = test_annotations,
processor=processor)
return test_dataset
def run_inference(model, test_dataset, device, disease_dict, top_n):
predicted_diseases = []
for i in range(len(test_dataset)):
example = test_dataset[i]
example = {k: v.unsqueeze(0).to(device) for k,v in example.items()}
outputs = model(**example)
logits = outputs.logits
if top_n == 1:
predicted_classes = [logits.argmax(-1).item()]
else:
predicted_classes = torch.topk(logits, top_n).indices.flatten().tolist()
diseases = [disease_dict[str(i)] for i in predicted_classes]
predicted_diseases.append(diseases)
return predicted_diseases
def main(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
model = load_model(args.model_path, device)
disease_dict = load_disease_dict(args.disease_dict_path)
data = prepare_data(args.csv_file, args.base_image_path)
predictions = run_inference(model, data, device, disease_dict, args.top_n)
for i, pred in enumerate(predictions):
print(f"Data {i + 1}: Top-{args.top_n} predicted diseases: {pred}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run inference on GestaltMML for diagnosing rare genetic diseases.')
parser.add_argument('--csv_file', type=str, required=True, help='Path to the input CSV file with image ids, image file names and corresponding texts')
parser.add_argument('--base_image_path', type=str, required=True, help='Base path to the folder of images')
parser.add_argument('--model_path', type=str, required=True, help='Path to the GestaltMML model weights')
parser.add_argument('--disease_dict_path', type=str, required=True, help='Path to the disease dictionary JSON file')
parser.add_argument('--top_n', type=int, default=1, help='Number of top predicted diseases to return')
args = parser.parse_args()
main(args)