-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
193 lines (189 loc) · 7.89 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import pandas as pd
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
import os, sys, re, torch, json, glob, argparse, sent2vec, joblib, nltk
from typing import List
from peft import PeftModel
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_kbit_training,
)
from itertools import chain
from datasets import load_dataset
import numpy as np
from nltk import word_tokenize
from nltk.corpus import stopwords
from string import punctuation
from scipy.spatial import distance
nltk.download('stopwords')
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
stop_words = set(stopwords.words('english'))
parser = argparse.ArgumentParser(description="PhenoGPT Medical Term Detector",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input", required = True, help="directory to input folder")
parser.add_argument("-o", "--output", required = True, help="directory to output folder")
parser.add_argument("-id", "--hpoid", choices=['yes', 'no'], default = 'yes', required = False, help="determine if HPO IDs should be predicted")
args = parser.parse_args()
## please replace the following lines as your directories to the Llama 2 7B base model & Lora-weight training above
BASE_MODEL = os.getcwd() + "/model/llama2/llama2_base"
lora_weights = os.getcwd() + '/model/llama2/llama2_lora_weights'
load_8bit = False
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.5)
##set up model
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=load_8bit,
device_map = "auto"
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
tokenizer.padding_side = "left"
model.eval()
hpo_database = joblib.load('hpo_database.json')
def preprocess_sentence(text):
text = text.replace('/', ' / ')
text = text.replace('.-', ' .- ')
text = text.replace('.', ' . ')
text = text.replace('\'', ' \' ')
text = text.lower()
tokens = [token for token in word_tokenize(text) if token not in punctuation and token not in stop_words]
return ' '.join(tokens)
def remove_hpo(text):
# Define the pattern to match HP:XXXXXXX
if "HP:XXXXXXX" in text:
pattern = "HP:XXXXXXX"
else:
pattern = r'HP:.+'
# Replace matched patterns with an empty string
cleaned_text = re.sub(pattern, '', text)
if 'note' in text.lower():
text = text.lower()
cleaned_text = re.sub(r'note:.+', '', text)
#cleaned_text = re.sub(pattern2, '', cleaned_text)
return cleaned_text
def generate_output(text):
instructions = "You are a medical assistant and reading a clinical note. Identify a list of all medical phenotypic abnormalities from input text. Format your answer as a list of the phenotypes separated by new line character and do not generate random answers. Only output the list."
base_prompt = """<s>[INST]\n<<SYS>>\nInstructions: {system_prompt}\n<</SYS>>\nInput: {user_prompt}[/INST]\n ### Response: """
prompt = base_prompt.format(system_prompt = instructions,
user_prompt = text)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to('cuda')
#model.to(DEVICE)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
pad_token_id = tokenizer.eos_token_id,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=300,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
if len(input_ids[0]) > 2048:
print("WARNING: Your text input has more than the predefined maximum 2048 tokens. The results may be defective.")
return(output)
def clean_output(output):
if "### Response:":
output = output.split("### Response:")[-1].split("\n")
output = [remove_hpo(text) for text in output]
if len(output) > 0:
output_clean = [t.split("|") for t in output]
output_clean = list(set(chain(*output_clean)))
output_clean = [re.sub(r'^[\W\d_]+|[\s\W]+$', '', t) for t in output_clean if not t.strip().startswith("END") and not t.strip() == '</s>']
output_clean = [re.sub('</s', '', t) for t in output_clean if t and t != "Phenotype"]
else:
print("No medical terms were detected")
output_clean = []
else:
print("No medical terms were detected")
output_clean = []
return(output_clean)
def read_text(input_file):
if ".txt" in input_file:
input_list=[input_file]
else:
input_list = glob.glob(input_file + "/*.txt")
input_dict = {}
for f in input_list:
file_name = f.split('/')[-1][:-4]
with open(f, 'r') as r:
data = r.readlines()
if len(data) > 1:
data = "\n".join(data)
input_dict[file_name] = data
return(input_dict)
def phenogpt_output(raw_output, biosent2vec, termDB2vec, convert2hpo = 'yes'):
answer_clean = clean_output(raw_output)
if convert2hpo == 'yes':
all_terms = list(termDB2vec.keys())
all_terms_vec = list(termDB2vec.values())
answers_preprocessed = [preprocess_sentence(txt) for txt in answer_clean]
answer_vec = biosent2vec.embed_sentences(answers_preprocessed)
term2hpo = {}
for i,phenoterm in enumerate(answer_vec):
all_distances = {}
dist = []
for j, ref in enumerate(all_terms_vec):
dis = distance.cosine(phenoterm, ref)
if dis >= 0:
all_distances[all_terms[j]] = 1 - dis
dist.append(1-dis)
if len(dist) != 0:
matched_pheno = list(all_distances.keys())[np.argmax(dist)]
hpo_id = hpo_database[matched_pheno]
term2hpo[answer_clean[i]] = hpo_id
return term2hpo
else:
return answer_clean
def main():
#please replace your model path here
biosent2vec_path = './BioSentVec/model/BioSentVec_PubMed_MIMICIII-bigram_d700.bin'
biosent2vec = sent2vec.Sent2vecModel()
try:
print("Loading BioSent2Vec model")
biosent2vec.load_model(biosent2vec_path)
print('model successfully loaded')
all_terms = list(hpo_database.keys())
all_terms_preprocessed = [preprocess_sentence(txt) for txt in all_terms]
all_terms_vec = biosent2vec.embed_sentences(all_terms_preprocessed)
##{Term : Numerical Vector}
termDB2vec = {k:v for k,v in zip(all_terms, all_terms_vec)}
print('start phenogpt')
input_dict = read_text(args.input)
for file_name, text in input_dict.items():
try:
# generate raw response
raw_output = generate_output(text[0])
# clean up response
output = phenogpt_output(raw_output, biosent2vec, termDB2vec, args.hpoid)
# save output
with open(args.output+"/"+file_name+"_phenogpt.txt", 'w') as f:
if args.hpoid == 'yes':
for k,v in output.items():
f.write(k+"\t"+v+"\n")
else:
for t in output:
f.write(t+'\n')
print(output)
except Exception as e:
print(e)
print("Cannot produce results for " + file_name)
except Exception as e:
raise ImportError
if __name__ == "__main__":
main()