-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathultimatum_v2.py
127 lines (108 loc) · 4.66 KB
/
ultimatum_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import matplotlib.pyplot as plt
from transcendent_fair_agent import trans_agent
import random
import copy
class ultimatum_v2(object):
def __init__(self,resource_val=1, proposer = trans_agent(), arbiter= trans_agent()):
self.resource_val = resource_val
self.proposer = proposer
self.arbiter = arbiter
propIdentity = {'arbiter':round(random.uniform(0,2),1)}
arbIdentity = {'proposer':round(random.uniform(0,2),1)}
random.seed = 32
self.proposer.setIdentity(propIdentity)
self.arbiter.setIdentity(arbIdentity)
def find_key(self, input_dict, value):
return {k for k, v in input_dict.items() if v == value}
def agent_decision(self):
split_factor = np.arange(0,1.01,0.01)
utility = {}
for i in split_factor:
my_split = i*self.resource_val
other_split = self.resource_val*(1-i)
utility[i] = self.proposer.utility_computation(my_split, other_split, 'arbiter')
return utility
def proposer_decision(self):
split_factor = np.arange(0,1.01,0.01)
satis_score = {}
utility = {}
for i in split_factor:
my_split = i*self.resource_val
other_split = self.resource_val*(1-i)
utility[i] = self.proposer.utility_computation(my_split, other_split,'arbiter')
# satis_score[i] = self.proposer.satisfaction_score(my_split, other_split)
# print("stais_score ", satis_score)
# utility_vals = list(utility.values())
# maxUtility = max(utility_vals)
# print("utility ", utility)
# print("max ", maxUtility)
# split = list(self.find_key(utility, maxUtility))[0]
# print(self.proposer.get_attrs())
decision, decisionUtil = self.proposer.decision(utility)
return round(decision,2), decisionUtil
# return utility
# return split
# return decision
def arbiter_decision(self, proposed_split):
# choices = [0, 1]
# choice_dict = {}
# for i in choices:
# if i == 0:
# my_split = 0
# other_split = 0
# else:
# my_split = proposed_split
# other_split = self.resource_val - proposed_split
# choice_dict[i] = self.arbiter.satisfaction_score(my_split, other_split)
# choice_dict[0] = 0
my_split = round(proposed_split,1)
other_split = round(self.resource_val - proposed_split,1)
utility = self.arbiter.utility_computation(my_split, other_split, 'proposer')
minAccept, utilAccept = self.arbiter.minAccept('proposer')
rejectUtil = self.arbiter.utility_computation(0,0,'proposer')
if utility>=utilAccept:
decision = 1
finalUtil = utility
else:
# arbUtil = self.arbiter.utility_computation(0,0,'proposer')
# print("Losing Out ", recvUtil, arbUtil, recvUtil-arbUtil)
decision = 0
finalUtil = rejectUtil
return decision, utility, utilAccept, minAccept
def agent_fair_score(self, split, agent_type = 'proposer'):
if agent_type=='proposer':
return self.proposer.fair_normalized(split)
else:
return self.arbiter.fair_normalized(split)
def find_accept(self, split_util):
utility = list(split_util.values())
# print(utility)
return max(utility)
# if max(utility) >= 0:
# return max(utility)
# else:
# y = 0
# x_key = utility.index(max(utility))
# for i in range(x_key,len(utility)):
# if utility[i+1] - utility[i] < 0.04:
# return utility[i]
def arbiter_mao(self):
split_util = {}
for split in np.arange(0,1.1,0.1):
split_util[split] = self.arbiter_decision(split)
splits = list(split_util.keys())
utility = list(split_util.values())
ylist = [j>0 for j in utility]
# decSplit, decUtil = self.arbiter.decision(split_util)
accept = self.find_accept(split_util)
accept_split = list(self.find_key(split_util, accept))[0]
return accept_split, accept
# return decSplit, decUtil
def game(self):
proposer_split, propUtil = self.proposer_decision()
# print(proposer_split)
arbiter_split = self.resource_val - proposer_split
decision, finalUtil, utilAccept, minAccept = self.arbiter_decision(arbiter_split)
# arbiter_decision = self.arbiter_decision(arbiter_split)
return proposer_split, round(arbiter_split,2), decision